SEARCH

SEARCH BY CITATION

References

  • Abate, C., L. Patel, F. J. 3rd Rauscher, and T. Curran. 1990. Redox regulation of fos and jun DNA-binding activity in vitro. Science 249:11571161.
  • Aguirre, J., W. Hansberg, and R. Navarro. 2006. Fungal responses to reactive oxygen species. Med. Mycol. 44:S101S107.
  • Apel, K., and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373399.
  • Asano, Y., D. Hagiwara, T. Yamashino, and T. Mizuno. 2007. Characterization of the bZip-type transcription factor NapA with reference to oxidative stress response in Aspergillus nidulans. Biosci. Biotechnol. Biochem. 71:18001803.
  • Bahn, Y. S., C. Xue, A. Idnurm, J. C. Rutherford, J. Heitman, and M. E. Cardenas. 2007. Sensing the environment: lessons from fungi. Nat. Rev. Microbiol. 5:5769.
  • Chang, P. K., L. L. Scharfenstein, M. Luo, N. Mahoney, R. J. Molyneux, J. Yu, et al. 2011. Loss of msnA, a putative stress regulatory gene, in Aspergillus parasiticus and Aspergillus flavus increased production of conidia, aflatoxins and kojic acid. Toxins 3:82104.
  • Davidson, M. K., H. K. Shandilya, K. Hirota, K. Ohta, and W. P. Wahls. 2004. Atf1-Pcr1-M26 complex links stress-activated MAPK and cAMP-dependent protein kinase pathways via chromatin remodeling of cgs2+. J. Biol. Chem. 279:5085750863.
  • Deppmann, C. D., R. S. Alvania, and E. J. Taparowsky. 2006. Cross-species annotation of basic leucine zipper factor interactions: Insight into the evolution of closed interaction networks. Mol. Biol. Evol. 23:14801492.
  • Edreva, A., V. Velikova, T. Tsonev, S. Dagnon, A. Gurel, and L. Aktas. 2008. Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Genet. Appl. Plant Physiol. 34:6778.
  • Ehrlich, K. C., J. Yu, and P. J. Cotty. 2005. Aflatoxin biosynthesis gene clusters and flanking regions. J. Appl. Microbiol. 99:518527.
  • Estruch, F. 2000. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev. 24:469486.
  • Fanelli, C., A. A. Fabbri, E. Finotti, P. Fasella, and S. Passi. 1984. Free-radicals and aflatoxin biosynthesis. Experientia 40:191193.
  • Fanelli, C., A. Ricelli, M. Reverberi, and A. A. Fabbri. 2004. Aflatoxins and ochratoxins in cereal grains: an open challenge. Recent Res. Dev. Crop Sci. 1:295317.
  • Furukawa, K., Y. Hoshi, T. Maeda, T. Nakajima, and K. Abe. 2005. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol. Microbiol. 56:12461261.
  • Gessler, N. N., A. A. Aver'yanov, and T. A. Belozerskaya. 2007. Reactive oxygen species in regulation of fungal development. Biochemistry (Mosc.) 72:10911109.
  • Hagiwara, D., Y. Matsubayashi, J. Marui, K. Furukawa, T. Yamashino, K. Kanamaru, et al. 2007. Characterization of the NikA histidine kinase implicated in the phosphorelay signal transduction of Aspergillus nidulans, with special reference to fungicide responses. Biosci. Biotechnol. Biochem. 71:844847.
  • Hagiwara, D., Y. Asano, T. Yamashino, and T. Mizuno. 2008. Characterization of bZip-type transcription factor AtfA with reference to stress responses of conidia of Aspergillus nidulans. Biosci. Biotechnol. Biochem. 72:27562760.
  • Hai, T., and T. Curran. 1991. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc. Natl. Acad. Sci. USA 88:37203724.
  • He, X. J., and J. S. Fassler. 2005. Identification of novel Yap1p and Skn7p binding sites involved in the oxidative stress response of Saccharomyces cerevisiae. Mol. Microbiol. 58:14541467.
  • He, Z. M., M. S. Price, G. R. Obrian, D. R. Georgianna, and G. A. Payne. 2007. Improved protocols for functional analysis in the pathogenic fungus Aspergillus flavus. BMC Microbiol. 7:104.
  • Huang, J. Q., H. F. Jiang, Y. Q. Zhou, Y. Lei, S. Y. Wang, and B. S. Liao. 2009. Ethylene inhibited aflatoxin biosynthesis is due to oxidative stress alleviation and related to glutathione redox state changes in Aspergillus flavus. Int. J. Food Microbiol. 130:1721.
  • Jayashree, T., and C. Subramanyam. 1999. Antiaflatoxigenic activity of eugenol is due to inhibition of lipid peroxidation. Lett. Appl. Microbiol. 28:179183.
  • Jayashree, T., and C. Subramanyam. 2000. Oxidative stress as a prerequisite for aflatoxin production by Aspergillus parasiticus. Free Radical Biol. Med. 29:981985.
  • Kawasaki, L., D. Wysong, R. Diamond, and J. Aguirre. 1997. Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress. J. Bacteriol. 179:32843292.
  • Kawasaki, L., O. Sanchez, K. Shiozaki, and J. Aguirre. 2002. SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol. Microbiol. 45:11531163.
  • Lara-Rojas, F., O. Sanchez, L. Kawasaki, and J. Aguirre. 2011. Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions. Mol. Microbiol. 80:436454.
  • Lee, J., C. Godon, G. Lagniel, D. Spector, J. Garin, J. Labarre, et al. 1999. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J. Biol. Chem. 274:1604016046.
  • Marchler, G., C. Schuller, G. Adam, and H. Ruis. 1993. A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J. 12:19972003.
  • Martinez-Pastor, M. T., G. Marchler, C. Schuller, A. Marchler-Bauer, H. Ruis, and F. Estruch. 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15:22272235.
  • Miskei, M., Z. Karanyi, and I. Pocsi. 2009. Annotation of stress-response proteins in the aspergilli. Fungal Genet. Biol. 46(Suppl. 1):S105S120.
  • Moye-Rowley, W. S. 2002. Transcription factors regulating the response to oxidative stress in yeast. Antioxid. Redox Signal. 4:123140.
  • Mulford, K. E., and J. S. Fassler. 2011. Association of the Skn7 and Yap1 transcription factors in the Saccharomyces cerevisiae oxidative stress response. Eukaryot. Cell 10:761769.
  • Narasaiah, K. V., R. B. Sashidhar, and C. Subramanyam. 2006. Biochemical analysis of oxidative stress in the production of aflatoxin and its precursor intermediates. Mycopathologia 162:179189.
  • Nguyen, A. N., A. Lee, W. Place, and K. Shiozaki. 2000. Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol. Biol. Cell 11:11691181.
  • O'Brien, K. M., R. Dirmeier, M. Engle, and R. O. Poyton. 2004. Mitochondrial protein oxidation in yeast mutants lacking manganese-(MnSOD) or copper- and zinc-containing superoxide dismutase (CuZnSOD): evidence that MnSOD and CuZnSOD have both unique and overlapping functions in protecting mitochondrial proteins from oxidative damage. J. Biol. Chem. 279:5181751827.
  • Ponts, N., L. Pinson-Gadais, C. Barreau, F. Richard-Forget, and T. Ouellet. 2007. Exogenous H2O2 and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum. FEBS Lett. 581:443447.
  • Proft, M., F. D. Gibbons, M. Copeland, F. P. Roth, and K. Struhl. 2005. Genomewide identification of Sko1 target promoters reveals a regulatory network that operates in response to osmotic stress in Saccharomyces cerevisiae. Eukaryot. Cell 4:13431352.
  • Reverberi, M., A. A. Fabbri, S. Zjalic, A. Ricelli, F. Punelli, and C. Fanelli. 2005. Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production. Appl. Microbiol. Biotechnol. 69:207215.
  • Reverberi, M., S. Zjalic, A. Ricelli, A. A. Fabbri, and C. Fanelli. 2006. Oxidant/antioxidant balance in Aspergillus parasiticus affects aflatoxin biosynthesis. Mycotoxin Res. 22:3947.
  • Reverberi, M., S. Zjalic, F. Punelli, A. Ricelli, A. A. Fabbri, and C. Fanelli. 2007. Apyap1 affects aflatoxin biosynthesis during Aspergillus parasiticus growth in maize seeds. Food Addit. Contam. 24:10701075.
  • Reverberi, M., S. Zjalic, A. Ricelli, F. Punelli, E. Camera, C. Fabbri, et al. 2008. Modulation of antioxidant defense in Aspergillus parasiticus is involved in aflatoxin biosynthesis: a role for the ApyapA gene. Eukaryot. Cell 7:9881000.
  • Reverberi, M., A. Ricelli, S. Zjalic, A. A. Fabbri, and C. Fanelli. 2010. Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl. Microbiol. Biotechnol. 87:899911.
  • Roze, L. V., M. J. Miller, M. Rarick, N. Mahanti, and J. E. Linz. 2004. A novel cAMP-response element, CRE1, modulates expression of nor-1 in Aspergillus parasiticus. J. Biol. Chem. 279:2742827439.
  • Roze, L. V., A. Chanda, J. Wee, D. Awad, and J. E. Linz. 2011. Stress-related transcription factor AtfB integrates secondary metabolism with oxidative stress response in aspergilli. J. Biol. Chem. 286:3513735148.
  • Sakamoto, K., T. H. Arima, K. Iwashita, O. Yamada, K. Gomi, and O. Akita. 2008. Aspergillus oryzae atfB encodes a transcription factor required for stress tolerance in conidia. Fungal Genet. Biol. 45:922932.
  • Thevelein, J. M., and J. H. de Winde. 1999. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 33:904918.
  • Toone, W. M., and N. Jones. 1998. Stress-activated signalling pathways in yeast. Genes Cells 3:485498.
  • Toone, W. M., B. A. Morgan, and N. Jones. 2001. Redox control of AP-1-like factors in yeast and beyond. Oncogene 20:23362346.
  • Trail, F., N. Mahanti, M. Rarick, R. Mehigh, S. H. Liang, R. Zhou, et al. 1995. Physical and transcriptional map of an aflatoxin gene cluster in Aspergillus parasiticus and functional disruption of a gene involved early in the aflatoxin pathway. Appl. Environ. Microbiol. 61:26652673.