SEARCH

SEARCH BY CITATION

References

  • American Society for Testing and Materials. 2012. Standard test method for quantification of Pseudomonas aeruginosa biofilm grown with high shear and continuous flow using CDC biofilm reactor. ASTM 2012:E2562.
  • Chen, X., and P. S. Stewart. 2000. Biofilm removal caused by chemical treatments. Water Res. 34:42294233.
  • Davies, J. C., and D. Bilton. 2009. Bugs, biofilms, and resistance in cystic fibrosis. Respir. Care 54:628640.
  • Davison, W. M., B. Pitts, and P. S. Stewart. 2010. Spatial and temporal patterns of biocide action against Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 54:29202927.
  • Ding, B., Q. Guan, J. P. Walsh, J. S. Boswell, T. W. Winter, E. S. Winter, et al. 2002. Correlation of the antibacterial activities of cationic peptide antibiotics and cationic steroid antibiotics. J. Med. Chem. 45:663669.
  • Dodge, J. A., P. A. Lewis, M. Stanton, and J. Wilsher. 2007. Cystic fibrosis mortality and survival in the UK: 1947–2003. Eur. Respir. J. 29:522526.
  • Epand, R. M., R. F. Epand, and P. B. Savage. 2008. Ceragenins (cationic steroid compounds), a novel class of antimicrobial agents. Drug News Perspect. 21:307311.
  • Fuxman Bass, J. I., D. M. Russo, M. L. Gabelloni, J. R. Geffner, M. Giordano, M. Catalano, et al. 2010. Extracellular DNA: a major proinflammatory component of Pseudomonas aeruginosa biofilms. J. Immunol. 184:63866395.
  • Gilligan, P. H. 1991. Microbiology of airway disease in patients with cystic fibrosis. Clin. Microbiol. Rev. 4:3551.
  • Goeres, D. M., L. R. Loetterle, M. A. Hamilton, R. Murga, D. W. Kirby, and R. M. Donlan. 2005. Statistical assessment of a laboratory method for growing biofilms. Microbiology 151:757762.
  • Hadi, R., K. Vickery, A. Deva, and T. Charlton. 2010. Biofilm removal by medical device cleaners: comparison of two bioreactor detection assays. J. Hosp. Infect. 74:160167.
  • Hassett, D. J., T. R. Korfhagen, R. T. Irvin, M. J. Schurr, K. Sauer, G. W. Lau, et al. 2010. Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies. Expert Opin. Ther. Targets 14:117130.
  • Hauser, A. R., M. Jain, M. Bar-Meir, and S. A. McColley. 2011. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin. Microbiol. Rev. 24:2970.
  • Kosorok, M. R., W. H. Wie, and P. M. Farrell. 1996. The incidence of cystic fibrosis. Stat. Med. 15:449462.
  • Li, C., A. Peters, E. Meredith, G. H. Allman, and P. B. Savage. 1998. Design and synthesis of potent sensitizers of Gram-negative bacteria based on a cholic acid scaffolding. J. Am. Chem. Soc. 120:29612962.
  • Loeve, M., K. Gerbrands, W. C. Hop, M. Rosenfeld, I. C. Hartmann, and H. A. Tiddens. 2011. Bronchiectasis and pulmonary exacerbations in children and young adults with cystic fibrosis. Chest 140:178185.
  • Lyczak, J. B., C. L. Cannon, and G. B. Pier. 2002. Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev. 15:194222.
  • McPhail, G. L., J. D. Acton, M. C. Fenchel, R. S. Amin, and M. Seid. 2008. Improvements in lung function outcomes in children with cystic fibrosis are associated with better nutrition, fewer chronic Pseudomonas aeruginosa infections, and dornase alfa use. J. Pediatr. 153:752757.
  • Moncla, B. J., K. Pryke, L. C. Rohan, and P. W. Graebing. 2011. Degradation of naturally occurring and engineered antimicrobial peptides by proteases. Adv. Biosci. Biotechnol. 2:404408.
  • Muallem, D., and P. Vergani. 2009. ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance reg-ulator. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364:247255.
  • Nagant, C., M. Tré-Hardy, M. El-Ouaaliti, P. Savage, M. Devleeschouwer, and J. P. Dehaye. 2010. Interaction between tobramycin and CSA-13 on clinical isolates of Pseudomonas aeruginosa in a model of young and mature biofilms. Appl. Microbiol. Biotechnol. 88:251263.
  • Nagant, C., Y. Feng, B. Lucas, K. Braeckmans, P. Savage, and J. P. Dehaye. 2011. Effect of a low concentration of a cationic steroid antibiotic (CSA-13) on the formation of a biofilm by Pseudomonas aeruginosa. J. Appl. Microbiol. 111:763772.
  • Nagant, C., B. Pitts, N. Kamran, M. Vandenbranden, J. G. Bolscher, P. S. Stewart, et al. 2012. Identification of peptides derived from the human antimicrobial peptide LL-37 active against the biofilms formed by Pseudomonas aeruginosa using a library of truncated fragments. Antimicrob. Agents Chemother. 56:56985708.
  • Nivens, D. E., D. E. Ohman, J. Williams, and M. J. Franklin. 2001. Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J. Bacteriol. 183:10471057.
  • Pollard, J., J. Wright, Y. Feng, D. Geng, C. Genberg, and P. B. Savage. 2009. Activities of ceragenin CSA-13 against established biofilms in an in vitro model of catheter decolonization. Antiinfect. Agents Med. Chem. 8:290294.
  • Rodríguez-Rojas, A., A. Oliver, and J. Blázquez. 2012. Intrinsic and environmental mutagenesis drive diversification and persistence of Pseudomonas aeruginosa in chronic lung infections. J. Infect. Dis. 205:121127.
  • Seil, M., C. Nagant, J. P. Dehaye, M. Vandenbranden, and M. F. Lensink. 2010. Spotlight on human LL-37, an immunomodulatory peptide with promising cell-penetrating properties. Pharmaceuticals 3:34353460.
  • Stewart, P. S., and J. W. Costerton. 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358:135138.
  • Stone, G., P. Wood, L. Dixon, M. Keyhan, and A. Matin. 2002. Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms. Antimicrob. Agents Chemother. 46:24582461.
  • Talbot, G. H., J. Bradley, J. E. Jr Edwards, D. Gilbert, M. Scheld, and J. G. Bartlett. 2006. Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin. Infect. Dis. 42:657668.
  • Walters, M. C., F. Roe, A. Bugnicourt, M. J. Franklin, and P. S. Stewart. 2003. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents Chemother. 47:317323.
  • Zhao, T., and Y. Liu. 2010. N-acetylcysteine inhibit biofilms produced by Pseudomonas aeruginosa. BMC Microbiol. 10:140.
  • Zheng, Z., and P. S. Stewart. 2002. Penetration of rifampin through Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 46:900903.