SEARCH

SEARCH BY CITATION

References

  • Allen, T. W., L. L. Burpee, and J. W. Buck. 2006. Variable adhesion and diurnal population patterns of epiphytic yeasts on creeping bentgrass. Can. J. Microbiol. 52:404410.
  • Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143169.
  • Andrews, J. H., and C. M. Kenerley. 1978. The effects of a pesticide program on non-target epiphytic microbial populations of apple leaves. Can. J. Microbiol. 24:10581072.
  • Braun, P. G., and J. C. Sutton. 1988. Infection cycles and population dynamics of Botrytis cinerea in strawberry leaves. Can. J. Plant Pathol. 10:133141.
  • Bristow, P. R., R. J. McNicol, and B. Williamson. 1986. Infection of strawberry flowers by Botrytis cinerea and its relevance to grey mould development. Ann. Appl. Biol. 109:545554.
  • Buck, J. W., and L. L. Burpee. 2002. The effects of fungicides on the phylloplane yeast populations of creeping bentgrass. Can. J. Microbiol. 48:522529.
  • Cadez, N., J. Zupan, and P. Raspor. 2010. The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Res. 10:619630.
  • Comitini, F., and M. Ciani. 2008. Influence of fungicide treatments on the occurrence of yeast flora associated with wine grapes. Ann. Microbiol. 58:489493.
  • Debode, J., W. Van Hemelrijck, S. Baeyen, P. Creemers, K. Heungens, and M. Maes. 2009. Quantitative detection and monitoring of Colletotrichum acutatum in strawberry leaves using real-time PCR. Plant. Pathol. 58:504514.
  • Divol, B., and A. Lonvaud-Funel. 2005. Evidence for viable but nonculturable yeasts in Botrytis-affected wine. J. Appl. Microbiol. 99:8593.
  • Droby, S., and E. Chalutz. 1994. Mode of action of biocontrol agents of postharvest diseases. Pp. 6375 in C. L. Wilson, M. E. Wisniewksi, eds. Biological control of postharvest diseases of fruits and vegetables- theory and practice. CRC Press, Boca Raton, Florida.
  • Ercolini, D., G. Moschetti, G. Blaiotta, and S. Coppola. 2001. The potential of a polyphasic PCR-DGGE approach in evaluating microbial diversity of natural whey cultures for water-buffalo mozzarella cheese production: bias of culture-dependent and culture-independent analyses. Syst. Appl. Microbiol. 24:610617.
  • Fonseca, Á., and J. Inácio. 2006. Phylloplane yeasts. Pp. 263301 in C. Rosa and G. Péter, eds. Biodiversity and ecophysiology of yeasts. The yeast handbook. Springer, Berlin.
  • Giraffa, G., and E. Neviani. 2001. DNA-based, culture-independent strategies for evaluating microbial communities in food-associated ecosystems. Int. J. Food Microbiol. 67:1934.
  • Guetsky, R., Y. Elad, D. Stienberg, and A. Dinoor. 2002. Establishment, survival and activity of the biocontrol agents Pichia guilermondii and Bacillus mycoides applied as a mixture on strawberry plants. Biocontrol Sci. Tech. 12:705714.
  • Guidarelli, M., F. Carbone, F. Mourgues, G. Perrotta, C. Rosati, P. Bertolini, et al. 2011. Colletotrichum acutatum interactions with unripe and ripe strawberry fruits and differential responses at histological and transcriptional levels. Plant. Pathol. 60:685697.
  • Helbig, J. 2002. Ability of the antagonistic yeast Cryptococcus albidus to control Botrytis cinerea in strawberry. Biocontrol 47:8599.
  • Hislop, E. C., and T. W. Cox. 1969. Effects of captan on the non-parasitic microflora of apple leaves. Trans. Br. Mycol. Soc. 52:223235.
  • Huang, R., G. Q. Li, J. Zhang, L. Yang, H. J. Che, D. H. Jiang, et al. 2011. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology 101:859869.
  • Jarvis, W. R., and H. Borecka. 1968. The susceptibility of strawberry flowers to infection by Botrytis cinerea Pers. ex Fr. Hort. Res. 8:147154.
  • Karabulut, O. A., H. Tezcan, A. Daus, L. Cohen, B. Wiess, and S. Droby. 2004. Control of preharvest and postharvest fruit rot in strawberry by Metschnikowia fructicola. Biocontrol Sci. Tech. 14:513521.
  • Kohl, J. J., W. W. M. L. Molhoek, B. B. H. Groenenboom-de Haas, and H. H. M. Goossen-van de Geijn. 2009. Selection and orchard testing of antagonists suppressing conidial production by the apple scab pathogen Venturia inaequalis. Eur. J. Plant Pathol. 123:401414.
  • Kurtzman, C. P., and C. J. Robnett. 1997. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J. Clin. Microbiol. 35:12161223.
  • Lima, G., A. Ippolito, F. Nigro, and M. Salerno. 1997. Effectiveness of Aureobasidium pullulans and Candida oleophila against postharvest strawberry rots. Postharvest Biol. Technol. 10:169178.
  • Maas, J. L., ed. 1998. P. 128 in Compendium of strawberry diseases. 2nd ed. APS Press, St. Paul, MN
  • Mo, E. K., and C. K. Sung. 2005. Effect of Pichia anomala SKM-T and Galactomyces geotrichum SJM-59 dipping on storage property and sensory quality of strawberry. Food Sci. Biotechnol. 14:487492.
  • Muyzer, G., and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127141.
  • Powelson, R. L. 1960. Initiation of strawberry fruit rot caused by Botrytis cinerea. Phytopathology 50:492494.
  • Prakitchaiwattana, C. J., G. H. Fleet, and G. M. Heard. 2004. Application and evaluation of denaturing gradient gel electrophoresis to analyse the yeast ecology of wine grapes. FEMS Yeast Res. 4:865877.
  • Serpaggi, V., F. Remize, G. Recorbet, E. Gaudot-Dumas, A. Sequeira-Le Grand, and H. Alexandre. 2012. Characterization of the “viable but nonculturable” (VBNC) state in the wine spoilage yeast Brettanomyces. Food Microbiol. 30:438447.
  • Smalla, K., G. Wieland, A. Buchner, A. Zock, J. Parzy, S. Kaiser, et al. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67:47424751.
  • Teixido, N., J. Usall, N. Magan, and I. Vinas. 1999. Microbial population dynamics on Golden Delicious apples from bud to harvest and effect of fungicide applications. Ann. Appl. Biol. 134:109116.
  • Van Hemelrijck, W., J. Debode, K. Heungens, M. Maes, and P. Creemers. 2010. Phenotypic and genetic characterization of Colletotrichum isolates from Belgian strawberry fields. Plant. Pathol. 59:853861.
  • Vartoukian, S. R., R. M. Palmer, and W. G. Wade. 2010. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol. Lett. 309:17.
  • Wedge, D. E., B. J. Smith, J. P. Quebedeauxc, and R. J. Constantinc. 2007. Fungicide management strategies for control of strawberry fruit rot diseases in Louisiana and Mississippi. Crop Prot. 26:14491458.
  • Wszelaki, A. L., and E. J. Mitcham. 2003. Effect of combinations of hot water dips, biological control and controlled atmospheres for control of gray mold on harvested strawberries. Postharvest Biol. Technol. 27:255264.
  • Zhang, H. Y., L. Wang, Y. Dong, S. Jiang, H. Cao, and R. J. Meng. 2007. Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biol. Control 40:287292.
  • Zhang, H. Y., L. C. Ma, M. Turner, H. X. Xu, X. D. Zheng, Y. Dong, et al. 2010. Salicylic acid enhances biocontrol efficacy of Rhodotorula glutinis against postharvest Rhizopus rot of strawberries and the possible mechanisms involve. Food Chem. 122:577583.