SEARCH

SEARCH BY CITATION

References

  • Anders, S., and W. Huber. 2010. Differential expression analysis for sequence count data. Genome Biol. 11:R106
  • Andersen, M. R., W. Vongsangnak, G. Panagiotou, M. P. Salazar, L. Lehmann, and J. Nielsen. 2008. A trispecies Aspergillus microarray: comparative transcriptomics of three Aspergillus species. Proc. Natl. Acad. Sci. USA 105:43874392.
  • Aro, N., A. Saloheimo, M. IImen, and M. Penttila. 2001. ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J. Biol. Chem. 276:2430924314.
  • Aro, N., M. IImen, A. Saloheimo, and M. Penttila. 2003. ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl. Environ. Microbiol. 69:5665.
  • Aro, N., T. Pakula, and M. Penttila. 2005. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol. Rev. 29:719739.
  • Beeson, W. T., A. T. Iavarone, C. D. Hausmann, J. H. Cate, and M. A. Marletta. 2011. Extracellular aldonolactonase from Myceliophthora thermophila. Appl. Environ. Microbiol. 77:650656.
  • Beeson, W. T., C. M. Phillips, J. H. D. Cate, and M. A. Marletta. 2012. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J. Am. Chem. Soc. 134:890892.
  • Berka, R. M., I. V. Grigoriev, R. Otillar, A. Salamov, J. Grimwood, I. Reid, et al. 2011. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat. Biotechnol. 29:922927.
  • Bey, M., S. M. Zhou, L. Poidevin, B. Henrissat, P. M. Coutinho, J. G. Berrin, et al. 2013. Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina. Appl. Environ. Microbiol. 79:488496.
  • Brunner, K., A. M. Lichtenauer, K. Kratochwill, M. Delic, and R. L. Mach. 2007. Xyr1 regulates xylanase but not cellulase formation in the head blight fungus Fusarium graminearum. Curr. Genet. 52:213220.
  • Calero-Nieto, F., A. Di Pietro, M. I. G. Roncero, and C. Hera. 2007. Role of the transcriptional activator XInR of Fusarium oxysporum in regulation of xylanase genes and virulence. Mol. Plant Microbe Interact. 20:977985.
  • Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37:D233D238.
  • Colot, H. V., G. Park, G. E. Turner, C. Ringelberg, C. M. Crew, L. Litvinkova, et al. 2006. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc. Natl. Acad. Sci. USA 103:1035210357.
  • Coradetti, S. T., J. P. Craig, Y. Xiong, T. Shock, C. G. Tian, and N. L. Glass. 2012. Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc. Natl. Acad. Sci. USA 109:73977402.
  • Delmas, S., S. T. Pullan, S. Gaddipati, M. Kokolski, S. Malla, M. J. Blythe, et al. 2012. Uncovering the genome-wide transcriptional responses of the filamentous fungus Aspergillus niger to lignocellulose using RNA sequencing. PLoS Genet. 8:e1002875.
  • Du, J., S. Li, and H. Zhao. 2010. Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol. BioSyst. 6:21502156.
  • Elvin, M., J. J. Loros, J. C. Dunlap, and C. Heintzen. 2005. The PAS/LOV protein VIVID supports a rapidly dampened daytime oscillator that facilitates entrainment of the Neurospora circadian clock. Genes Dev. 19:25932605.
  • Espagne, E., O. Lespinet, F. Malagnac, C. Da Silva, O. Jaillon, B. M. Porcel, et al. 2008. The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol. 9:R77.
  • Floudas, D., M. Binder, R. Riley, K. Barry, R. A. Blanchette, B.Henrissat, et al. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:17151719.
  • Frey, S. D., J. Six, and E. T. Elliott. 2003. Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil-litter interface. Soil Biol. Biochem. 35:10011004.
  • Galagan, J. E., S. E. Calvo, K. A. Borkovich, E. U. Selker, N. D. Read, D. Jaffe, et al. 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859868.
  • Galagan, J. E., S. E. Calvo, C. Cuomo, L. J. Ma, J. R. Wortman, S. Batzoglou, et al. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:11051115.
  • Galazka, J. M., C. G. Tian, W. T. Beeson, B. Martinez, N. L. Glass, and J. H. D. Cate. 2010. Cellodextrin transport in yeast for improved biofuel production. Science 330:8486.
  • Gielkens, M. M., E. Dekkers, J. Visser, and L. H. de Graaff. 1999. Two cellobiohydrolase-encoding genes from Aspergillus niger require D-xylose and the xylanolytic transcriptional activator XlnR for their expression. Appl. Environ. Microbiol. 65:43404345.
  • Gusakov, A. V. 2011. Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol. 29:419425.
  • Hakkinen, M., M. Arvas, M. Oja, N. Aro, M. Penttila, M. Saloheimo, et al. 2012. Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb. Cell Fact. 11:134.
  • Heimann, M., and M. Reichstein. 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289292.
  • Hieber, M., and M. O. Gessner. 2002. Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:10261038.
  • de Hoon, M. J., S. Imoto, J. Nolan, and S. Miyano. 2004. Open source clustering software. Bioinformatics 20:14531454.
  • Klich, M. A. 2002. Biogeography of Aspergillus species in soil and litter. Mycologia 94:2127.
  • Kominkova, D., K. A. Kuehn, N. Busing, D. Steiner, and M. O. Gessner. 2000. Microbial biomass, growth, and respiration associated with submerged litter of Phragmites australis decomposing in a littoral reed stand of a large lake. Aquat. Microb. Ecol. 22:271282.
  • Konno, N., K. Igarashi, N. Habu, M. Samejima, and A. Isogai. 2009. Cloning of the Trichoderma reesei cDNA encoding a glucuronan lyase belonging to a novel polysaccharide lyase family. Appl. Environ. Microbiol. 75:101107.
  • Kunitake, E., S. Tani, J. I. Sumitani, and T. Kawaguchi. 2012. A novel transcriptional regulator, ClbR, controls the cellobiose- and cellulose-responsive induction of cellulase and xylanase genes regulated by two distinct signaling pathways in Aspergillus aculeatus. Appl. Microbiol. Biotechnol. 97:20172028.
  • Langmead, B., C. Trapnell, M. Pop, and S. L. Salzberg. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10:R25.
  • Li, X., W. T. Beeson, C. M. Phillips, M. A. Marletta, and J. H. Cate. 2012. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20:10511061.
  • Liu, G., L. Zhang, Y. Qin, G. Zou, Z. Li, X. Yan, et al. 2013. Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Sci. Rep. 3:1569.
  • Mach, L., and S. Zeilinger. 2003. Regulation of gene expression in industrial fungi: Trichoderma. Appl. Microbiol. Biotechnol. 60:515522.
  • Mach-Aigner, A. R., M. E. Pucher, M. G. Steiger, G. E. Bauer, and R. L. Mach. 2008. Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl. Environ. Microbiol. 74:65546562.
  • Margeot, A., B. Hahn-Hagerdal, M. Edlund, R. Slade, and F. Monot. 2009. New improvements for lignocellulosic ethanol. Curr. Opin. Biotechnol. 20:372380.
  • McCluskey, K. 2003. The fungal genetics stock center from molds to molecules. Adv. Appl. Microbiol. 52:245262.
  • Nayak, T., E. Szewczyk, C. E. Oakley, A. Osmani, L. Ukil, S. L. Murray, et al. 2006. A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:15571566.
  • Nitta, M., T. Furukawa, Y. Shida, K. Mori, S. Kuhara, Y. Morikawa, et al. 2012. A new Zn(II)(2)Cys(6)-type transcription factor BglR regulates beta-glucosidase expression in Trichoderma reesei. Fungal Genet. Biol. 49:388397.
  • Noguchi, Y., M. Sano, K. Kanamaru, T. Ko, M. Takeuchi, M. Kato, et al. 2009. Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae. Appl. Microbiol. Biotechnol. 85:141154.
  • Ogawa, M., T. Kobayashi, and Y. Koyama. 2012. ManR, a novel Zn(II)2Cys6 transcriptional activator, controls the beta-mannan utilization system in Aspergillus oryzae. Fungal Genet. Biol. 49:987995.
  • Ogawa, M., T. Kobayashi, and Y. Koyama. 2013. ManR, a transcriptional regulator of the beta-mannan utilization system, controls the cellulose utilization system in Aspergillus oryzae. Biosci. Biotechnol. Biochem. 77:426429.
  • van Peij, N. N. M. E., M. M. C. Gielkens, R. P. de Vries, J. Visser, and L. H. de Graaff. 1998. The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl. Environ. Microbiol. 64:36153619.
  • Perkins, D. D., and B. C. Turner. 1988. Neurospora from natural populations: toward the population biology of a haploid eukaryote. Exp. Mycol. 12:91131.
  • Peterson, R., and H. Nevalainen. 2012. Trichoderma reesei RUT-C30–thirty years of strain improvement. Microbiology 158:5868.
  • Phillips, C. M., W. T. Beeson, J. H. Cate, and M. A. Marletta. 2011a. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem. Biol. 6:13991406.
  • Phillips, C. M., A. T. Iavarone, and M. A. Marletta. 2011b. Quantitative proteomic approach for cellulose degradation by Neurospora crassa. J. Proteome Res. 10:41774185.
  • Porciuncula, J., T. Furukawa, K. Mori, Y. Shida, H. Hirakawa, K. Tashiro, et al. 2013. Single nucleotide polymorphism analysis of a Trichoderma reesei hyper-cellulolytic mutant developed in Japan. Biosci. Biotechnol. Biochem. 77:534543.
  • Portnoy, T., A. Margeot, R. Linke, L. Atanasova, E. Fekete, E. Sandor, et al. 2011. The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 12:269.
  • Punt, P. J., M. A. Dingemanse, A. Kuyvenhoven, R. D. Soede, P. H. Pouwels, and C. A. van den Hondel. 1990. Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase. Gene 93:101109.
  • Quinlan, R. J., M. D. Sweeney, L. Lo Leggio, H. Otten, J. C. Poulsen, K. S. Johansen, et al. 2011. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc. Natl. Acad. Sci. USA 108:1507915084.
  • Roberts, A., C. Trapnell, J. Donaghey, J. L. Rinn, and L. Pachter. 2011. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 12:R22.
  • Ruijter, G. J., and J. Visser. 1997. Carbon repression in Aspergilli. FEMS Microbiol. Lett. 151:103114.
  • Sternberg, D., and G. R. Mandels. 1979. Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J. Bacteriol. 139:761769.
  • Stricker, A. R., K. Grosstessner-Hain, E. Wurleitner, and R. L. Mach. 2006. Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot. Cell 5:21282137.
  • Stricker, A. R., M. G. Steiger, and R. L. Mach. 2007. Xyr1 receives the lactose induction signal and regulates lactose metabolism in Hypocrea jecorina. FEBS Lett. 581:39153920.
  • Sun, J. P., and N. L. Glass. 2011. Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. PLoS ONE 6:e25654.
  • Sun, J. P., C. G. Tian, S. Diamond, and N. L. Glass. 2012. Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa. Eukaryot. Cell 11:482493.
  • Szewczyk, E., T. Nayak, C. E. Oakley, H. Edgerton, Y. Xiong, N. Taheri-Talesh, et al. 2006. Fusion PCR and gene targeting in Aspergillus nidulans. Nat. Protoc. 1:31113120.
  • Tian, C., W. T. Beeson, A. T. Iavarone, J. Sun, M. A. Marletta, J. H. Cate, et al. 2009. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc. Natl. Acad. Sci. USA 106:2215722162.
  • Updegraff, D. M. 1969. Semimicro determination of cellulose in biological materials. Anal. Biochem. 32:420424.
  • Vishniac, W., and M. Santer. 1957. The thiobacilli. Bacteriol. Rev. 21:195213.
  • Visser, H., V. Vivi, P.J. Punt, A.V. Gusakov, P.T. Olson, R. Joosten, et al. 2011. Development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1. Ind. Biotechnol. 7:214223.
  • Vogel, H. 1956. A convenient growth medium for Neurospora (medium N). Microb. Genet. Bull. 13:243.
  • Waring, R. B., G. S. May, and N. R. Morris. 1989. Characterization of an inducible expression system in Aspergillus nidulans using alcA and tubulin-coding genes. Gene 79:119130.
  • Yamakawa, Y., Y. Endo, N. Li, M. Yoshizawa, M. Aoyama, A. Watanabe, et al. 2013. Regulation of cellulolytic genes by McmA, the SRF-MADS box protein in Aspergillus nidulans. Biochem. Biophys. Res. Commun. 431:777782.
  • Zhou, Q., J. Xu, Y. Kou, X. Lv, X. Zhang, G. Zhao, et al. 2012. Differential involvement of beta-glucosidases from Hypocrea jecorina in rapid induction of cellulase genes by cellulose and cellobiose. Eukaryot. Cell 11:13711381.
  • Znameroski, E. A., S. T. Coradetti, C. M. Roche, J. C. Tsai, A. T. Iavarone, J. H. D. Cate, et al. 2012. Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. Proc. Natl. Acad. Sci. USA 109:60126017.