SEARCH

SEARCH BY CITATION

Keywords:

  • dystonia;
  • somatosensory feedback;
  • somatosensory system;
  • basal ganglia

Abstract

The pathophysiology of dystonia is still not fully understood, but it is widely held that a dysfunction of the corticostriatal–thalamocortical motor circuits plays a major role in the pathophysiology of this syndrome. Although the most dramatic symptoms in dystonia seem to be motor in nature, marked somatosensory perceptual deficits are also present in this disease. In addition, several lines of evidence, including neurophysiological, neuroimaging and experimental findings, suggest that both motor and somatosensory functions may be defective in dystonia. Consequently, abnormal processing of the somatosensory input in the central nervous system may lead to inefficient sensorimotor integration, thus contributing substantially to the generation of dystonic movements. Whether somatosensory abnormalities are capable of triggering dystonia is an issue warranting further study. Although it seems unlikely that abnormal somatosensory input is the only drive to dystonia, it might be more correlated to the development of focal hand than generalized dystonia because local somesthetic factors are more selectively involved in the former than in the latter where, instead it seems to be a widespread deficit in processing sensory stimuli of different modality. Because basal ganglia and motor areas are heavily connected not only with somatosensory areas, but also with visual and acoustic areas, it is possible that abnormalities of other sensory modalities, such as visual and acoustic, may also be implicated in the pathophysiology of more severe forms of primary dystonia. Further studies have to be addressed to the assessment of the role of sensory modalities and their interaction on the pathophysiology of different forms of primary dystonia. © 2003 Movement Disorder Society