• EMG;
  • elbow;
  • Parkinson's disease


Studies of electromyographic (EMG) patterns during movements in Parkinson's disease (PD) have often yielded contradictory results, making it impossible to derive a set of rules to explain how muscles are activated to perform different movement tasks. We sought to clarify the changes in modulation of EMG parameters associated with control of movement distance during fast movements in patients with PD. Specifically, we studied surface EMG activity during rapid elbow flexion movements over a wide range of distances (5–72 degrees) in 14 patients with relatively mild symptoms of PD and 14 control subjects of similar age, sex, height, and weight. The PD group exhibited several changes in EMG modulation including impaired modulation of agonist burst duration; increased number of agonist bursts; reduced scaling of agonist EMG magnitude in the more severely impaired subjects; and increased temporal overlap of the antagonist and agonist signals in the most severely impaired subjects. These findings suggest that progressive motor dysfunction in PD is accompanied by increasing deficits in modulating muscle activation. These results help clarify previous disparate and sometimes contradictory results of EMG patterns in subjects with PD. © 2001 Movement Disorder Society.