• dystonia;
  • botulinum toxin;
  • Johnson–van Boven–Phillips domes;
  • spatial acuity


Disorganization of sensory cortical somatotopy has been described in adult onset primary torsion dystonia (AOPTD). Although botulinum toxin type A (BTX-A) acts peripherally, some studies have suggested a central effect. Our primary hypothesis was that sensory cortical reorganization occurs after BTX-A treatment of AOPTD. Twenty patients with cervical dystonia and 18 healthy age-matched control patients had spatial discrimination thresholds (SDTs) measured at baseline and monthly for 3 months. Mean baseline SDT (±SD) was 1.75 ±0.76 mm in the dystonia group, greater than the control group mean of 1.323 ± 0.45 mm (P = 0.05). Mean control group SDT did not vary significantly over time. A transient improvement of 23% from baseline (P = 0.005) occurred in the dystonia group 1 month after injection, which did not positively correlate with changes in physician and patient ratings of torticollis severity. The presumed mechanism of SDT improvement is a modulation of afferent cortical inputs from muscle spindles. © 2007 Movement Disorder Society