• Machado-Joseph disease;
  • MRI;
  • DTI;
  • VBM


Although white matter damage may play a major role in the pathogenesis of spinocerebellar ataxia 3 (SCA3), available data rely exclusively upon macrostructural analyses. In this setting we designed a study to investigate white matter integrity. We evaluated 38 genetically-confirmed SCA3 patients (mean age, 52.76 ± 12.70 years; 21 males) with clinical scales and brain magnetic resonance imaging (MRI) and 38 healthy subjects as a control group (mean age, 48.86 ± 12.07 years, 20 male). All individuals underwent the same protocol for high-resolution T1 and T2 images and diffusion tensor imaging acquisition (32 directions) in a 3-T scanner. We used Tract-Based Spatial Statistics (FSL 4.1.4) to analyze diffusion data and SPM8/DARTEL for voxel-based morphometry of infratentorial structures. T2-relaxometry of cerebellum was performed with in-house–developed software Aftervoxel and Interactive Volume Segmentation (IVS). Patients' mean age at onset was 40.02 ± 11.48 years and mean duration of disease was 9.3 ± 2.7 years. Mean International Cooperative Ataxia Rating Scale (ICARS) and Scale for Assessment and Rating of Ataxia (SARA) scores were 32.08 ± 4.01 and 14.65 ± 7.33, respectively. Voxel-based morphometry demonstrated a volumetric reduction of gray and white matter in cerebellum and brainstem (P <.001). We found reduced fractional anisotropy (P <.05) in the cerebellum and brainstem. There were also areas of increased radial diffusivity (P <.05) in the cerebellum, brainstem, thalamus, frontal lobes, and temporal lobes. In addition, we found decreased T2-relaxation values in the white matter of the right cerebellar hemisphere. Microstructural white matter dysfunction, not previously reported, occurs in the cerebellum and brainstem of SCA3 patients. © 2013 Movement Disorder Society