• 1
    Holbert MA, Marmorstein R. Structure and activity of enzymes that remove histone modifications. Curr Opin Struct Biol 2005; 15(6): 673680.
  • 2
    Lee TI, Young RA. Transcription of eukaryotic protein-coding genes. Annu Rev Genet 2000; 34: 77137.
  • 3
    Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403(6765): 4145.
  • 4
    Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol 2004; 14(14): R546551.
  • 5
    Holliday R. The inheritance of epigenetic defects. Science 1987; 238(4824): 163170.
  • 6
    Cheung P, Lau P. Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol 2005; 19(3): 563573.
  • 7
    Hake SB, Xiao A, Allis CD. Linking the epigenetic 'language' of covalent histone modifications to cancer. Br J Cancer 2004; 90(4): 761769.
  • 8
    Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16(1): 621.
  • 9
    Yoo CB, Jones PA. Epigenetic therapy of cancer: Past, present and future. Nat Rev Drug Discov 2006; 5(1): 3750.
  • 10
    Tchurikov NA. Molecular mechanisms of epigenetics. Biochemistry (Mosc) 2005; 70(4): 406423.
  • 11
    Wu C, Morris JR. Genes, genetics, and epigenetics: A correspondence. Science 2001; 293(5532): 11031105.
  • 12
    Rodenhiser D, Mann M. Epigenetics and human disease: Translating basic biology into clinical applications. CMAJ 2006; 174(3): 341348.
  • 13
    Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429(6990): 457463.
  • 14
    Bhadra MP, Bhadra U, Kundu J, Birchler JA. Gene expression analysis of the function of the male-specific lethal complex in Drosophila. Genetics 2005; 169(4): 20612074.
  • 15
    Anguera MC, Sun BK, Xu N, Lee JT. X-chromosome kiss and tell: How the Xs go their separate ways. Cold Spring Harb Symp Quant Biol 2006; 71: 429437.
  • 16
    Kato Y, Sasaki H. Imprinting and looping: Epigenetic marks control interactions between regulatory elements. Bioessays 2005; 27(1): 14.
  • 17
    Kristeleit R, Stimson L, Workman P, Aherne W. Histone modification enzymes: Novel targets for cancer drugs. Expert Opin Emerg Drugs 2004; 9(1): 135154.
  • 18
    Ng HH, Bird A. DNA methylation and chromatin modification. Curr Opin Genet Dev 1999; 9(2): 158163.
  • 19
    Robertson KD, Jones PA. DNA methylation: Past, present and future directions. Carcinogenesis 2000; 21(3): 461467.
  • 20
    Bird A. The essentials of DNA methylation. Cell 1992; 70(1): 58.
  • 21
    Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA 2000; 97(10): 52375242.
  • 22
    Haines TR, Rodenhiser DI, Ainsworth PJ. Allele-specific non-CpG methylation of the Nf1 gene during early mouse development. Dev Biol 2001; 240(2): 585598.
  • 23
    Wolffe A. Chromatin: Structure and function. San Diego: Academic Press; 1998. xiv, 447.
  • 24
    Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997; 389(6648): 251260.
  • 25
    Luger K. Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev 2003; 13(2): 127135.
  • 26
    Gill G. SUMO and ubiquitin in the nucleus: Different functions, similar mechanisms? Genes Dev 2004; 18(17): 20462059.
  • 27
    Ling X, Harkness TA, Schultz MC, Fisher-Adams G, Grunstein M. Yeast histone H3 and H4 amino termini are important for nucleosome assembly in vivo and in vitro: Redundant and position-independent functions in assembly but not in gene regulation. Genes Dev 1996; 10(6): 686699.
  • 28
    Esteller M. CpG island hypermethylation and tumor suppressor genes: A booming present, a brighter future. Oncogene 2002; 21(35): 54275440.
  • 29
    Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract 2005; 2 (Suppl 1): S4S11.
  • 30
    Zhu WG, Otterson GA. The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells. Curr Med Chem Anticancer Agents 2003; 3(3): 187199.
  • 31
    Rothhammer T, Bosserhoff AK. Epigenetic events in malignant melanoma. Pigment Cell Res 2007; 20(2): 92111.
  • 32
    Klein CB, Su L, Bowser D, Leszczynska J. Chromate-induced epimutations in mammalian cells. Environ Health Perspect 2002; 110 (Suppl 5): 739743.
  • 33
    Salnikow K, Costa M. Epigenetic mechanisms of nickel carcinogenesis. J Environ Pathol Toxicol Oncol 2000; 19(3): 307318.
  • 34
    Ke Q, Davidson T, Chen H, Kluz T, Costa M. Alterations of histone modifications and transgene silencing by nickel chloride. Carcinogenesis 2006; 27(7): 14811488.
  • 35
    Oller AR, Costa M, Oberdorster G. Carcinogenicity assessment of selected nickel compounds. Toxicol Appl Pharmacol 1997; 143(1): 152166.
  • 36
    Shogren-Knaak MA, Alaimo PJ, Shokat KM. Recent advances in chemical approaches to the study of biological systems. Annu Rev Cell Dev Biol 2001; 17: 405433.
  • 37
    Schreiber SL. Small molecules: The missing link in the central dogma. Nat Chem Biol 2005; 1(2): 6466.
  • 38
    Strausberg RL, Schreiber SL. From knowing to controlling: A path from Genomics to drugs using small molecule probes. Science 2003; 300(5617): 294295.
  • 39
    Pratt MR, Schwartz EC, Muir TW. Small-molecule-mediated rescue of protein function by an inducible proteolytic shunt. Proc Natl Acad Sci USA 2007; 104(27): 1120911214.
  • 40
    Swaminathan V, Reddy BA, Ruthrotha Selvi B, Sukanya MS, Kundu TK. Small molecule modulators in epigenetics: Implications in gene expression and therapeutics. Subcell Biochem 2007; 41: 397428.
  • 41
    Suzuki T, Miyata N. Epigenetic control using natural products and synthetic molecules. Curr Med Chem 2006; 13(8): 935958.
  • 42
    Bjornsson HT, Cui H, Gius D, Fallin MD, Feinberg AP. The new field of epigenomics: Implications for cancer and other common disease research. Cold Spring Harb Symp Quant Biol 2004; 69: 447456.
  • 43
    Bestor T, Laudano A, Mattaliano R, Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 1988; 203(4): 971983.
  • 44
    Yoder JA, Bestor TH. A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast. Hum Mol Genet 1998; 7(2): 279284.
  • 45
    Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 1998; 19(3): 219220.
  • 46
    Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 2005; 74: 481514.
  • 47
    Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 2006; 311(5759): 395398.
  • 48
    Bourc'his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 2004; 431(7004): 9699.
  • 49
    Bourc'his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science 2001; 294(5551): 25362539.
  • 50
    Fang JY, Lu R, Mikovits JA, Cheng ZH, Zhu HY, Chen YX. Regulation of hMSH2 and hMLH1 expression in the human colon cancer cell line SW1116 by DNA methyltransferase 1. Cancer Lett 2006; 233(1): 124130.
  • 51
    Dunn BK. Hypomethylation: One side of a larger picture. Ann NY Acad Sci 2003; 983: 2842.
  • 52
    Jaenisch R, Bird A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33 (3s): 245254.
  • 53
    Laird PW. The power and the promise of DNA methylation markers. Nat Rev 2003; 3(4): 253266.
  • 54
    Szyf M. Targeting DNA methylation in cancer. Ageing Res Rev 2003; 2(3): 299328.
  • 55
    Tischoff I, Wittekind C, Tannapfel A. Role of epigenetic alterations in cholangiocarcinoma. J Hepatobiliary Pancreat Surg 2006; 13(4): 274279.
  • 56
    Esteller M. The necessity of a human epigenome project. Carcinogenesis 2006; 27(6): 11211125.
  • 57
    Cairns BR. Emerging roles for chromatin remodeling in cancer biology. Trends Cell Biol 2001; 11(11): S15S21.
  • 58
    Howard G, Eiges R, Gaudet F, Jaenisch R, Eden A. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 2007; (3): 404408.
  • 59
    Yamada Y, Jackson-Grusby L, Linhart H, Meissner A, Eden A, Lin H, Jaenisch R. Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc Natl Acad Sci USA 2005; 102(38): 1358013585.
  • 60
    Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 2003; 300(5618): 455.
  • 61
    Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R. Induction of tumors in mice by genomic hypomethylation. Science 2003; 300(5618): 489492.
  • 62
    Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: A fundamental aspect of neoplasia. Adv Cancer Res 1998; 72: 141196.
  • 63
    Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J 2001; 20(10): 25362544.
  • 64
    Esteller M. Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol 2005; 45: 629656.
  • 65
    Baylin SB. Mechanisms underlying epigenetically mediated gene silencing in cancer. Semin Cancer Biol 2002; 12(5): 331337.
  • 66
    Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev 2002; 3(6): 415428.
  • 67
    Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980; 20(1): 8593.
  • 68
    Ginder GD, Whitters MJ, Pohlman JK. Activation of a chicken embryonic globin gene in adult erythroid cells by 5-azacytidine and sodium butyrate. Proc Natl Acad Sci USA 1984; 81(13): 39543958.
  • 69
    Weber J, Salgaller M, Samid D, Johnson B, Herlyn M, Lassam N, Treisman J, Rosenberg SA. Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2′-deoxycytidine. Cancer Res 1994; 54(7): 17661771.
  • 70
    Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R. Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res 2000; 60(21): 60396044.
  • 71
    Lubbert M. DNA methylation inhibitors in the treatment of leukemias, myelodysplastic syndromes and hemoglobinopathies: Clinical results and possible mechanisms of action. Curr Top Microbiol Immunol 2000; 249: 135164.
  • 72
    Christman JK. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene 2002; 21(35): 54835495.
  • 73
    Daskalakis M, Nguyen TT, Nguyen C, Guldberg P, Kohler G, Wijermans P, Jones PA, Lubbert M. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 2002; 100(8): 29572964.
  • 74
    Silverman LR, Mufti GJ. Methylation inhibitor therapy in the treatment of myelodysplastic syndrome. Nat Clin Pract Oncol 2005; 2 (Suppl 1): S12S23.
  • 75
    Cheson BD, Jasperse DM, Simon R, Friedman MA. A critical appraisal of low-dose cytosine arabinoside in patients with acute non-lymphocytic leukemia and myelodysplastic syndromes. J Clin Oncol 1986; 4(12): 18571864.
  • 76
    Lewandowski K, Gozdzik J, Hansz J. Current approaches of treatment for myelodysplastic syndrome (MDS). Acta Haematol Pol 1995; 26(4): 333341.
  • 77
    Beran M. Intensive chemotherapy for patients with high-risk myelodysplastic syndrome. Int J Hematol 2000; 72(2): 139150.
  • 78
    Beisler JA. Isolation, characterization, and properties of a labile hydrolysis product of the antitumor nucleoside, 5-azacytidine. J Med Chem 1978; 21(2): 204208.
  • 79
    Beisler JA, Abbasi MM, Driscoll JS. Dihydro-5-azacytidine hydrochloride, a biologically active and chemically stable analog of 5-azacytidine. Cancer Treat Rep 1976; 60(11): 16711674.
  • 80
    Presant CA, Coulter D, Valeriote F, Vietti TJ. Contrasting cytotoxicity kinetics of 5-azacytidine and dihydro-5-azacytidine hydrochloride in L1210 leukemia in mice. J Natl Cancer Inst 1981; 66(6): 11511154.
  • 81
    Antonsson BE, Avramis VI, Nyce J, Holcenberg JS. Effect of 5-azacytidine and congeners on DNA methylation and expression of deoxycytidine kinase in the human lymphoid cell lines CCRF/CEM/0 and CCRF/CEM/dCk-1. Cancer Res 1987; 47(14): 36723678.
  • 82
    Kees UR, Avramis VI. Biochemical pharmacology and DNA methylation studies of arabinosyl 5-azacytidine and 5,6-dihydro-5-azacytidine in two human leukemia cell lines PER-145 and PER-163. Anticancer Drugs 1995; 6(2): 303310.
  • 83
    Powell WC, Avramis VI. Biochemical pharmacology of 5,6-dihydro-5-azacytidine (DHAC) and DNA hypomethylation in tumor (L1210)-bearing mice. Cancer Chemother Pharmacol 1988; 21(2): 117121.
  • 84
    Yoo CB, Cheng JC, Jones PA. Zebularine: A new drug for epigenetic therapy. Biochem Soc Trans 2004; 32(Pt 6): 910912.
  • 85
    Cheng JC, Matsen CB, Gonzales FA, Ye W, Greer S, Marquez VE, Jones PA, Selker EU. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 2003; 95(5): 399409.
  • 86
    Siedlecki P, Boy RG, Musch T, Brueckner B, Suhai S, Lyko F, Zielenkiewicz P. Discovery of two novel, small-molecule inhibitors of DNA methylation. J Med Chem 2006; 49(2): 678683.
  • 87
    Brueckner B, Boy RG, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, Suhai S, Wiessler M, Lyko F. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 2005; 65(14): 63056311.
  • 88
    Schuebel K, Baylin S. In living color: DNA methyltransferase caught in the act. Nat Methods 2005; 2(10): 736738.
  • 89
    Cornacchia E, Golbus J, Maybaum J, Strahler J, Hanash S, Richardson B. Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J Immunol 1988; 140(7): 21972200.
  • 90
    Scheinbart LS, Johnson MA, Gross LA, Edelstein SR, Richardson BC. Procainamide inhibits DNA methyltransferase in a human T cell line. J Rheumatol 1991; 18(4): 530534.
  • 91
    Thomas TJ, Messner RP. Effects of lupus-inducing drugs on the B to Z transition of synthetic DNA. Arthritis Rheum 1986; 29(5): 638645.
  • 92
    Zacharias W, Koopman WJ. Lupus-inducing drugs alter the structure of supercoiled circular DNA domains. Arthritis Rheum 1990; 33(3): 366374.
  • 93
    Pina IC, Gautschi JT, Wang GY, Sanders ML, Schmitz FJ, France D, Cornell-Kennon S, Sambucetti LC, Remiszewski SW, Perez LB, Bair KW, Crews P. Psammaplins from the sponge Pseudoceratina purpurea: Inhibition of both histone deacetylase and DNA methyltransferase. J Org Chem 2003; 68(10): 38663873.
  • 94
    Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 2003; 63(22): 75637570.
  • 95
    Davis AJ, Gelmon KA, Siu LL, Moore MJ, Britten CD, Mistry N, Klamut H, D'Aloisio S, MacLean M, Wainman N, Ayers D, Firby P, Besterman JM, Reid GK, Eisenhauer EA. Phase I and pharmacologic study of the human DNA methyltransferase antisense oligodeoxynucleotide MG98 given as a 21-day continuous infusion every 4 weeks. Invest New Drugs 2003; 21(1): 8597.
  • 96
    Stewart DJ, Donehower RC, Eisenhauer EA, Wainman N, Shah AK, Bonfils C, MacLeod AR, Besterman JM, Reid GK. A phase I pharmacokinetic and pharmacodynamic study of the DNA methyltransferase 1 inhibitor MG98 administered twice weekly. Ann Oncol 2003; 14(5): 766774.
  • 97
    Lee WJ, Zhu BT. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis 2006; 27(2): 269277.
  • 98
    Lin X, Asgari K, Putzi MJ, Gage WR, Yu X, Cornblatt BS, Kumar A, Piantadosi S, DeWeese TL, De Marzo AM, Nelson WG. Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide. Cancer Res 2001; 61(24): 86118616.
  • 99
    Segura-Pacheco B, Trejo-Becerril C, Perez-Cardenas E, Taja-Chayeb L, Mariscal I, Chavez A, Acuna C, Salazar AM, Lizano M, Duenas-Gonzalez A. Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin Cancer Res 2003; 9(5): 15961603.
  • 100
    Villar-Garea A, Fraga MF, Espada J, Esteller M. Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 2003; 63(16): 49844989.
  • 101
    Chuang JC, Yoo CB, Kwan JM, Li TW, Liang G, Yang AS, Jones PA. Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol Cancer Ther 2005; 4(10): 15151520.
  • 102
    Lee DY, Teyssier C, Strahl BD, Stallcup MR. Role of protein methylation in regulation of transcription. Endocr Rev 2005; 26(2): 147170.
  • 103
    Marmorstein R. Structure of SET domain proteins: A new twist on histone methylation. Trends Biochem Sci 2003; 28(2): 5962.
  • 104
    Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K, Zhang Y. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 2002; 12(12): 10521058.
  • 105
    van Leeuwen F, Gafken PR, Gottschling DE. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 2002; 109(6): 745756.
  • 106
    Jenuwein T. Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol 2001; 11(6): 266273.
  • 107
    Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T. Active genes are tri-methylated at K4 of histone H3. Nature 2002; 419(6905): 407411.
  • 108
    Schneider R, Bannister AJ, Kouzarides T. Unsafe SETs: Histone lysine methyltransferases and cancer. Trends Biochem Sci 2002; 27(8): 396402.
  • 109
    Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419(6907): 624629.
  • 110
    Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, Sabel MS, Livant D, Weiss SJ, Rubin MA, Chinnaiyan AM. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003; 100(20): 1160611611.
  • 111
    van Leenders GJ, Dukers D, Hessels D, van den Kieboom SW, Hulsbergen CA, Witjes JA, Otte AP, Meijer CJ, Raaphorst FM. Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur Urol 2007; 52(2): 455463.
  • 112
    Hwang C, Giri VN, Wilkinson JC, Wright CW, Wilkinson AS, Cooney KA, Duckett CS. EZH2 regulates the transcription of estrogen-responsive genes through association with REA, an estrogen receptor corepressor. Breast Cancer Res Treat 2008; 107(2): 235242.
  • 113
    Hess JL. MLL: A histone methyltransferase disrupted in leukemia. Trends Mol Med 2004; 10(10): 500507.
  • 114
    Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM, Su L, Xu G, Zhang Y. hDOT1L links histone methylation to leukemogenesis. Cell 2005; 121(2): 167178.
  • 115
    Baylin SB, Ohm JE. Epigenetic gene silencing in cancer—A mechanism for early oncogenic pathway addiction? Nat Rev 2006; 6(2): 107116.
  • 116
    McGarvey KM, Fahrner JA, Greene E, Martens J, Jenuwein T, Baylin SB. Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res 2006; 66(7): 35413549.
  • 117
    Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A. Identification of a specific inhibitor of the histone methyltransferase SU(VAR) 3-9. Nat Chem Biol 2005; 1(3): 143145.
  • 118
    Kubicek S, O'Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, Rea S, Mechtler K, Kowalski JA, Homon CA, Kelly TA, Jenuwein T. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 2007; 25(3): 473481.
  • 119
    Tachibana M, Sugimoto K, Fukushima T, Shinkai Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 2001; 276(27): 2530925317.
  • 120
    Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog L SD1. Cell 2004; 119(7): 941953.
  • 121
    Forneris F, Binda C, Vanoni MA, Battaglioli E, Mattevi A. Human histone demethylase LSD1 reads the histone code. J Biol Chem 2005; 280(50): 4136041365.
  • 122
    Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, Gunther T, Buettner R, Schule R. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 2005; 437(7057): 436439.
  • 123
    Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature 2006; 439(7078): 811816.
  • 124
    Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 2006; 125(3): 483495.
  • 125
    Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 2006; 442(7100): 312316.
  • 126
    Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M, Shi Y. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 2006; 125(3): 467481.
  • 127
    Fodor BD, Kubicek S, Yonezawa M, O'Sullivan RJ, Sengupta R, Perez-Burgos L, Opravil S, Mechtler K, Schotta G, Jenuwein T. Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev 2006; 20(12): 15571562.
  • 128
    Cloos PA, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T, Hansen KH, Helin K. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 2006; 442(7100): 307311.
  • 129
    Wissmann M, Yin N, Muller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Gunther T, Buettner R, Metzger E, Schule R. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 2007; 9(3): 347353.
  • 130
    Clissold PM, Ponting CP. JmjC: Cupin metalloenzyme-like domains in jumonji, hairless and phospholipase A2beta. Trends Biochem Sci 2001; 26(1): 79.
  • 131
    Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Perez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005; 37(4): 391400.
  • 132
    Kahl P, Gullotti L, Heukamp LC, Wolf S, Friedrichs N, Vorreuther R, Solleder G, Bastian PJ, Ellinger J, Metzger E, Schule R, Buettner R. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res 2006; 66(23): 1134111347.
  • 133
    Yang ZQ, Imoto I, Fukuda Y, Pimkhaokham A, Shimada Y, Imamura M, Sugano S, Nakamura Y, Inazawa J. Identification of a novel gene, GASC1, within an amplicon at 9p 23-24frequently detected in esophageal cancer cell lines. Cancer Res 2000; 60(17): 47354739.
  • 134
    Finberg JP, Youdim MB. Selective MAO A and B inhibitors: Their mechanism of action and pharmacology. Neuropharmacology 1983; 22(3 Spec No): 441446.
  • 135
    Lee MG, Wynder C, Schmidt DM, McCafferty DG, Shiekhattar R. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem Biol 2006; 13(6): 563567.
  • 136
    Szewczuk LM, Culhane JC, Yang M, Majumdar A, Yu H, Cole PA. Mechanistic analysis of a suicide inactivator of histone demethylase L SD1. Biochemistry 2007; 46(23): 68926902.
  • 137
    Huang Y, Greene E, Murray Stewart T, Goodwin AC, Baylin SB, Woster PM, Casero RA, Jr. Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proc Natl Acad Sci USA 2007; 104(19): 80238028.
  • 138
    Zhang Y, Reinberg D. Transcription regulation by histone methylation: Interplay between different covalent modifications of the core histone tails. Genes Dev 2001; 15(18): 23432360.
  • 139
    Lee JH, Cook JR, Yang ZH, Mirochnitchenko O, Gunderson SI, Felix AM, Herth N, Hoffmann R, Pestka S. PRMT7, a new protein arginine methyltransferase that synthesizes symmetric dimethylarginine. J Biol Chem 2005; 280(5): 36563664.
  • 140
    Gary JD, Clarke S. RNA and protein interactions modulated by protein arginine methylation. Prog Nucleic Acid Res Mol Biol 1998; 61: 65131.
  • 141
    Ma H, Baumann CT, Li H, Strahl BD, Rice R, Jelinek MA, Aswad DW, Allis CD, Hager GL, Stallcup MR. Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a steroid-regulated promoter. Curr Biol 2001; 11(24): 19811985.
  • 142
    Wang H, Huang ZQ, Xia L, Feng Q, Erdjument-Bromage H, Strahl BD, Briggs SD, Allis CD, Wong J, Tempst P, Zhang Y. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 2001; 293(5531): 853857.
  • 143
    Bauer UM, Daujat S, Nielsen SJ, Nightingale K, Kouzarides T. Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep 2002; 3(1): 3944.
  • 144
    Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 2004; 24(21): 96309645.
  • 145
    Amur SG, Shanker G, Cochran JM, Ved HS, Pieringer RA. Correlation between inhibition of myelin basic protein (arginine) methyltransferase by sinefungin and lack of compact myelin formation in cultures of cerebral cells from embryonic mice. J Neurosci Res 1986; 16(2): 367376.
  • 146
    Huang S. Histone methyltransferases, diet nutrients and tumour suppressors. Nat Rev 2002; 2(6): 469476.
  • 147
    Johnson BA, Najbauer J, Aswad DW. Accumulation of substrates for protein L-isoaspartyl methyltransferase in adenosine dialdehyde-treated PC12 cells. J Biol Chem 1993; 268(9): 61746181.
  • 148
    Hanzelka BL, Greenberg EP. Quorum sensing in Vibrio fischeri: Evidence that S-adenosylmethionine is the amino acid substrate for autoinducer synthesis. J Bacteriol 1996; 178(17): 52915294.
  • 149
    Najbauer J, Johnson BA, Aswad DW. Analysis of stable protein methylation in cultured cells. Arch Biochem Biophys 1992; 293(1): 8592.
  • 150
    Mowen KA, Schurter BT, Fathman JW, David M, Glimcher LH. Arginine methylation of NIP45 modulates cytokine gene expression in effector T lymphocytes. Mol Cell 2004; 15(4): 559571.
  • 151
    Cheng D, Yadav N, King RW, Swanson MS, Weinstein EJ, Bedford MT. Small molecule regulators of protein arginine methyltransferases. J Biol Chem 2004; 279(23): 2389223899.
  • 152
    Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ, Kouzarides T. Histone deimination antagonizes arginine methylation. Cell 2004; 118(5): 545553.
  • 153
    Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y, Roeder RG, Clarke S, Stallcup MR, Allis CD, Coonrod SA. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 2004; 306(5694): 279283.
  • 154
    Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ. PAD, a growing family of citrullinating enzymes: Genes, features and involvement in disease. Bioessays 2003; 25(11): 11061118.
  • 155
    Nakashima K, Hagiwara T, Yamada M. Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J Biol Chem 2002; 277(51): 4956249568.
  • 156
    Asaga H, Nakashima K, Senshu T, Ishigami A, Yamada M. Immunocytochemical localization of peptidylarginine deiminase in human eosinophils and neutrophils. J Leukoc Biol 2001; 70(1): 4651.
  • 157
    Hagiwara T, Nakashima K, Hirano H, Senshu T, Yamada M. Deimination of arginine residues in nucleophosmin/B23 and histones in HL-60 granulocytes. Biochem Biophys Res Commun 2002; 290(3): 979983.
  • 158
    Arita K, Shimizu T, Hashimoto H, Hidaka Y, Yamada M, Sato M. Structural basis for histone N-terminal recognition by human peptidylarginine deiminase 4. Proc Natl Acad Sci USA 2006; 103(14): 52915296.
  • 159
    Hagiwara T, Hidaka Y, Yamada M. Deimination of histone H2A and H4 at arginine 3 in HL-60 granulocytes. Biochemistry 2005; 44(15): 58275834.
  • 160
    Denman RB. PAD: The smoking gun behind arginine methylation signaling? Bioessays 2005; 27(3): 242246.
  • 161
    Garrett R, Grisham CM. Biochemistry. Fort Worth: Saunders College Pub; 1999. p 871.
  • 162
    Hidaka Y, Hagiwara T, Yamada M. Methylation of the guanidino group of arginine residues prevents citrullination by peptidylarginine deiminase IV. FEBS Lett 2005; 579(19): 40884092.
  • 163
    Luo Y, Knuckley B, Lee YH, Stallcup MR, Thompson PR. A fluoroacetamidine-based inactivator of protein arginine deiminase 4: Design, synthesis, and in vitro and in vivo evaluation. J Am Chem Soc 2006; 128(4): 10921093.
  • 164
    Hebbes TR, Thorne AW, Crane-Robinson C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 1988; 7(5): 13951402.
  • 165
    Vetting MW, de Carvalho LPS, Yu M, Hegde SS, Magnet S, Roderick SL, Blanchard JS. Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys 2005; 433(1): 212226.
  • 166
    Yang XJ. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 2004; 32(3): 959976.
  • 167
    Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 2000; 64(2): 435459.
  • 168
    Roth KS, Whitehurst-Cook M, Chan JC. Urinary tract infections in children. Acta Paediatr Taiwan 2001; 42(2): 7074.
  • 169
    Lee KK, Workman JL. Histone acetyltransferase complexes: One size doesn't fit all. Nat Rev 2007; 8(4): 284295.
  • 170
    Polevoda B, Sherman F. The diversity of acetylated proteins. Genome Biol 2002; 3(5): reviews 0006.
  • 171
    Giordano A, Avantaggiati ML. p300 and CBP: Partners for life and death. J Cell Physiol 1999; 181(2): 218230.
  • 172
    Ohta K, Ohigashi M, Naganawa A, Ikeda H, Sakai M, Nishikawa J, Imagawa M, Osada S, Nishihara T. Histone acetyltransferase MOZ acts as a co-activator of Nrf2-MafK and induces tumour marker gene expression during hepatocarcinogenesis. Biochem J 2007; 402(3): 559566.
  • 173
    Giles RH, Peters DJ, Breuning MH. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet 1998; 14(5): 178183.
  • 174
    Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, Daigo Y, Russell P, Wilson A, Sowter HM, Delhanty JD, Ponder BA, Kouzarides T, Caldas C. Mutations truncating the EP300 acetylase in human cancers. Nat Genet 2000; 24(3): 300303.
  • 175
    Muraoka M, Konishi M, Kikuchi-Yanoshita R, Tanaka K, Shitara N, Chong JM, Iwama T, Miyaki M. p300 gene alterations in colorectal and gastric carcinomas. Oncogene 1996; 12(7): 15651569.
  • 176
    Iyer NG, Chin SF, Ozdag H, Daigo Y, Hu DE, Cariati M, Brindle K, Aparicio S, Caldas C. p300 regulates p53-dependent apoptosis after DNA damage in colorectal cancer cells by modulation of PUMA/p21 levels. Proc Natl Acad Sci USA 2004; 101(19): 73867391.
  • 177
    Avantaggiati ML, Ogryzko V, Gardner K, Giordano A, Levine AS, Kelly K. Recruitment of p300/CBP in p53-dependent signal pathways. Cell 1997; 89(7): 11751184.
  • 178
    Liu Y, Colosimo AL, Yang XJ, Liao D. Adenovirus E1B 55-kilodalton oncoprotein inhibits p53 acetylation by PCAF. Mol Cell Biol 2000; 20(15): 55405553.
  • 179
    Tang Y, Luo J, Zhang W, Gu W. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 2006; 24(6): 827839.
  • 180
    Feng X, Hara Y, Riabowol K. Different HATS of the ING1 gene family. Trends Cell Biol 2002; 12(11): 532538.
  • 181
    Sadler K. Steroid hormones send a signal. Trends Cell Biol 2001; 11(1): 15.
  • 182
    Rowley JD, Reshmi S, Sobulo O, Musvee T, Anastasi J, Raimondi S, Schneider NR, Barredo JC, Cantu ES, Schlegelberger B, Behm F, Doggett NA, Borrow J, Zeleznik-Le N. All patients with the T(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood 1997; 90(2): 535541.
  • 183
    Wang HG, Rikitake Y, Carter MC, Yaciuk P, Abraham SE, Zerler B, Moran E. Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J Virol 1993; 67(1): 476488.
  • 184
    Stein RW, Corrigan M, Yaciuk P, Whelan J, Moran E. Analysis of E1A-mediated growth regulation functions: Binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J Virol 1990; 64(9): 44214427.
  • 185
    Frisch SM, Mymryk JS. Adenovirus-5 E1A: Paradox and paradigm. Nat Rev Mol Cell Biol 2002; 3(6): 441452.
  • 186
    Sato K. Glutathione transferases as markers of preneoplasia and neoplasia. Adv Cancer Res 1989; 52: 205255.
  • 187
    McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 1998; 94(3): 363374.
  • 188
    McMahon SB, Wood MA, Cole MD. The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol Cell Biol 2000; 20(2): 556562.
  • 189
    Carrozza MJ, Utley RT, Workman JL, Cote J. The diverse functions of histone acetyltransferase complexes. Trends Genet 2003; 19(6): 321329.
  • 190
    Eid JE, Kung AL, Scully R, Livingston DM. p300 interacts with the nuclear proto-oncoprotein SYT as part of the active control of cell adhesion. Cell 2000; 102(6): 839848.
  • 191
    Kitabayashi I, Aikawa Y, Nguyen LA, Yokoyama A, Ohki M. Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ-CBP fusion protein. EMBO J 2001; 20(24): 71847196.
  • 192
    Wheeler JC, Shigesada K, Gergen JP, Ito Y. Mechanisms of transcriptional regulation by Runt domain proteins. Semin Cell Dev Biol 2000; 11(5): 369375.
  • 193
    Halkidou K, Gnanapragasam VJ, Mehta PB, Logan IR, Brady ME, Cook S, Leung HY, Neal DE, Robson CN. Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene 2003; 22(16): 24662477.
  • 194
    Brady ME, Ozanne DM, Gaughan L, Waite I, Cook S, Neal DE, Robson CN. Tip60 is a nuclear hormone receptor coactivator. J Biol Chem 1999; 274(25): 1759917604.
  • 195
    Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt E, Zhu YZ, Greenwald M, Kurokawa R, Housman DE, Jackson GR, Marsh JL, Thompson LM. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001; 413(6857): 739743.
  • 196
    Lau OD, Kundu TK, Soccio RE, Ait-Si-Ali S, Khalil EM, Vassilev A, Wolffe AP, Nakatani Y, Roeder RG, Cole PA. HATs off: Selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol Cell 2000; 5(3): 589595.
  • 197
    Costanzo V, Robertson K, Ying CY, Kim E, Avvedimento E, Gottesman M, Grieco D, Gautier J. Reconstitution of an ATM-dependent checkpoint that inhibits chromosomal DNA replication following DNA damage. Mol Cell 2000; 6(3): 649659.
  • 198
    Cebrat M, Kim CM, Thompson PR, Daugherty M, Cole PA. Synthesis and analysis of potential prodrugs of coenzyme A analogues for the inhibition of the histone acetyltransferase p300. Bioorg Med Chem 2003; 11(15): 33073313.
  • 199
    Zheng Y, Balasubramanyam K, Cebrat M, Buck D, Guidez F, Zelent A, Alani RM, Cole PA. Synthesis and evaluation of a potent and selective cell-permeable p300 histone acetyltransferase inhibitor. J Am Chem Soc 2005; 127(49): 1718217183.
  • 200
    Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK. Small molecule modulators of histone acetyltransferase p300. J Biol Chem 2003; 278(21): 1913419140.
  • 201
    Chen J, Zhang Y-H, Wang L-K, Sucheck SJ, Snow AM, Hecht SM. Inhibitors of DNA polymerase from Schoepfia californica. Chem Commun 1998; 27692770.
  • 202
    Balasubramanyam K, Altaf M, Varier RA, Swaminathan V, Ravindran A, Sadhale PP, Kundu TK. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem 2004; 279(32): 3371633726.
  • 203
    Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U, Kundu TK. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 2004; 279(49): 5116351171.
  • 204
    Mantelingu K, Reddy BA, Swaminathan V, Kishore AH, Siddappa NB, Kumar GV, Nagashankar G, Natesh N, Roy S, Sadhale PP, Ranga U, Narayana C, Kundu TK. Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chem Biol 2007; 14(6): 645657.
  • 205
    Stimson L, Rowlands MG, Newbatt YM, Smith NF, Raynaud FI, Rogers P, Bavetsias V, Gorsuch S, Jarman M, Bannister A, Kouzarides T, McDonald E, Workman P, Aherne GW. Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity. Mol Cancer Ther 2005; 4(10): 15211532.
  • 206
    Kamat AM, Sethi G, Aggarwal BB. Curcumin potentiates the apoptotic effects of chemotherapeutic agents and cytokines through down-regulation of nuclear factor-kappaB and nuclear factor-kappaB-regulated gene products in IFN-alpha-sensitive and IFN-alpha-resistant human bladder cancer cells. Mol Cancer Ther 2007; 6(3): 10221030.
  • 207
    Shankar S, Srivastava RK. Involvement of Bcl-2 family members, phosphatidylinositol 3′-kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)-induced apoptosis in prostate cancer. Int J Oncol 2007; 30(4): 905918.
  • 208
    Biel M, Kretsovali A, Karatzali E, Papamatheakis J, Giannis A. Design, synthesis, and biological evaluation of a small-molecule inhibitor of the histone acetyltransferase Gcn5. Angew Chem Int Ed Engl 2004; 43(30): 39743976.
  • 209
    Costi R, Di Santo R, Artico M, Miele G, Valentini P, Novellino E, Cereseto A. Cinnamoyl compounds as simple molecules that inhibit p300 histone acetyltransferase. J Med Chem 2007; 50(8): 19731977.
  • 210
    Verdin E, Dequiedt F, Kasler HG. Class II histone deacetylases: Versatile regulators. Trends Genet 2003; 19(5): 286293.
  • 211
    Nusinzon I, Horvath CM. Histone deacetylases as transcriptional activators? Role reversal in inducible gene regulation. Sci STKE 2005; 2005(296): re11.
  • 212
    Guo JJ, Li QL, Zhang J, Huang AL. Histone deacetylation is involved in activation of CXCL10 upon IFNgamma stimulation. Mol Cells 2006; 22(2): 163167.
  • 213
    Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408(6810): 307310.
  • 214
    Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. J Mol Biol 2004; 338(1): 1731.
  • 215
    de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem J 2003; 370(Pt 3): 737749.
  • 216
    Smith JS, Avalos J, Celic I, Muhammad S, Wolberger C, Boeke JD. SIR2 family of NAD(+)-dependent protein deacetylases. Methods Enzymol 2002; 353: 282300.
  • 217
    Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 2002; 277(28): 2574825755.
  • 218
    Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkuhler C. HDACs, histone deacetylation and gene transcription: From molecular biology to cancer therapeutics. Cell Res 2007; 17(3): 195211.
  • 219
    Wang S, Yan-Neale Y, Zeremski M, Cohen D. Transcription regulation by histone deacetylases. Novartis Found Symp 2004; 259: 238245.
  • 220
    Ekwall K. Genome-wide analysis of HDAC function. Trends Genet 2005; 21(11): 608615.
  • 221
    Boyle GM, Martyn AC, Parsons PG. Histone deacetylase inhibitors and malignant melanoma. Pigment Cell Res 2005; 18(3): 160166.
  • 222
    Marks PA, Jiang X. Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell cycle 2005; 4(4): 549551.
  • 223
    Kim DH, Kim M, Kwon HJ. Histone deacetylase in carcinogenesis and its inhibitors as anti-cancer agents. J Biochem Mol Biol 2003; 36(1): 110119.
  • 224
    Lin RJ, Nagy L, Inoue S, Shao W, Miller WH, Jr., Evans RM. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998; 391(6669): 811814.
  • 225
    Bi G, Jiang G. The molecular mechanism of HDAC inhibitors in anticancer effects. Cell Mol Immunol 2006; 3(4): 285290.
  • 226
    Secrist JP, Zhou X, Richon VM. HDAC inhibitors for the treatment of cancer. Curr Opin Invest Drugs 2003; 4(12): 14221427.
  • 227
    Monneret C. Histone deacetylase inhibitors for epigenetic therapy of cancer. Anticancer Drugs 2007; 18(4): 363370.
  • 228
    Marchion D, Munster P. Development of histone deacetylase inhibitors for cancer treatment. Expert Rev Anticancer Ther 2007; 7(4): 583598.
  • 229
    Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 2000; 14(9): 10211026.
  • 230
    Guarente L, Picard F. Calorie restriction—The SIR2 connection. Cell 2005; 120(4): 473482.
  • 231
    Lin HY, Chen CS, Lin SP, Weng JR, Chen CS. Targeting histone deacetylase in cancer therapy. Med Res Rev 2006; 26(4): 397413.
  • 232
    Mai A, Massa S, Rotili D, Cerbara I, Valente S, Pezzi R, Simeoni S, Ragno R. Histone deacetylation in epigenetics: An attractive target for anticancer therapy. Med Res Rev 2005; 25(3): 261309.
  • 233
    Marks PA, Dokmanovic M. Histone deacetylase inhibitors: Discovery and development as anticancer agents. Expert Opin Invest Drugs 2005; 14(12): 14971511.
  • 234
    Monneret C. Histone deacetylase inhibitors. Eur J Med Chem 2005; 40(1): 113.
  • 235
    Perrine SP, Olivieri NF, Faller DV, Vichinsky EP, Dover GJ, Ginder GD. Butyrate derivatives. New agents for stimulating fetal globin production in the beta-globin disorders. Am J Pediatr Hematol Oncol 1994; 16(1): 6771.
  • 236
    Candido EP, Reeves R, Davie JR. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 1978; 14(1): 105113.
  • 237
    Sealy L, Chalkley R. The effect of sodium butyrate on histone modification. Cell 1978; 14(1): 115121.
  • 238
    Yang H, Hoshino K, Sanchez-Gonzalez B, Kantarjian H, Garcia-Manero G. Antileukemia activity of the combination of 5-aza-2′-deoxycytidine with valproic acid. Leuk Res 2005; 29(7): 739748.
  • 239
    Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999; 401(6749): 188193.
  • 240
    Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 1990; 265(28): 1717417179.
  • 241
    Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999; 21(1): 103107.
  • 242
    Kelly WK, O'Connor OA, Krug LM, Chiao JH, Heaney M, Curley T, MacGregore-Cortelli B, Tong W, Secrist JP, Schwartz L, Richardson S, Chu E, Olgac S, Marks PA, Scher H, Richon VM. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol 2005; 23(17): 39233931.
  • 243
    Kelly WK, Richon VM, O'Connor O, Curley T, MacGregor-Curtelli B, Tong W, Klang M, Schwartz L, Richardson S, Rosa E, Drobnjak M, Cordon-Cordo C, Chiao JH, Rifkind R, Marks PA, Scher H. Phase I clinical trial of histone deacetylase inhibitor: Suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 2003; 9(10 Pt 1): 35783588.
  • 244
    Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: Causes and therapies. Nat Rev 2001; 1(3): 194202.
  • 245
    Saito A, Yamashita T, Mariko Y, Nosaka Y, Tsuchiya K, Ando T, Suzuki T, Tsuruo T, Nakanishi O. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci USA 1999; 96(8): 45924597.
  • 246
    Camphausen K, Burgan W, Cerra M, Oswald KA, Trepel JB, Lee MJ, Tofilon PJ. Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res 2004; 64(1): 316321.
  • 247
    Wang XF, Qian DZ, Ren M, Kato Y, Wei Y, Zhang L, Fansler Z, Clark D, Nakanishi O, Pili R. Epigenetic modulation of retinoic acid receptor beta2 by the histone deacetylase inhibitor MS-275 in human renal cell carcinoma. Clin Cancer Res 2005; 11(9): 35353542.
  • 248
    Pauer LR, Olivares J, Cunningham C, Williams A, Grove W, Kraker A, Olson S, Nemunaitis J. Phase I study of oral CI-994 in combination with carboplatin and paclitaxel in the treatment of patients with advanced solid tumors. Cancer Invest 2004; 22(6): 886896.
  • 249
    Prakash S, Foster BJ, Meyer M, Wozniak A, Heilbrun LK, Flaherty L, Zalupski M, Radulovic L, Valdivieso M, LoRusso PM. Chronic oral administration of CI-994: A phase 1 study. Invest New Drugs 2001; 19(1): 111.
  • 250
    Undevia SD, Kindler HL, Janisch L, Olson SC, Schilsky RL, Vogelzang NJ, Kimmel KA, Macek TA, Ratain MJ. A phase I study of the oral combination of CI-994, a putative histone deacetylase inhibitor, and capecitabine. Ann Oncol 2004; 15(11): 17051711.
  • 251
    Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem 1993; 268(30): 2242922435.
  • 252
    Byrd JC, Marcucci G, Parthun MR, Xiao JJ, Klisovic RB, Moran M, Lin TS, Liu S, Sklenar AR, Davis ME, Lucas DM, Fischer B, Shank R, Tejaswi SL, Binkley P, Wright J, Chan KK, Grever MR. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 2005; 105(3): 959967.
  • 253
    Marshall JL, Rizvi N, Kauh J, Dahut W, Figuera M, Kang MH, Figg WD, Wainer I, Chaissang C, Li MZ, Hawkins MJ. A phase I trial of depsipeptide (FR901228) in patients with advanced cancer. J Exp Ther Oncol 2002; 2(6): 325332.
  • 254
    Piekarz RL, Robey R, Sandor V, Bakke S, Wilson WH, Dahmoush L, Kingma DM, Turner ML, Altemus R, Bates SE. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: A case report. Blood 2001; 98(9): 28652868.
  • 255
    Sandor V, Bakke S, Robey RW, Kang MH, Blagosklonny MV, Bender J, Brooks R, Piekarz RL, Tucker E, Figg WD, Chan KK, Goldspiel B, Fojo AT, Balcerzak SP, Bates SE. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res 2002; 8(3): 718728.
  • 256
    Remiszewski SW. The discovery of NVP-LAQ824: From concept to clinic. Curr Med Chem 2003; 10(22): 23932402.
  • 257
    Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci USA 2003; 100(8): 43894394.
  • 258
    Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A, Koomen J, Olashaw N, Parsons JT, Yang XJ, Dent SR, Yao TP, Lane WS, Seto E. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell 2007; 27(2): 197213.
  • 259
    Tran AD, Marmo TP, Salam AA, Che S, Finkelstein E, Kabarriti R, Xenias HS, Mazitschek R, Hubbert C, Kawaguchi Y, Sheetz MP, Yao TP, Bulinski JC. HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J Cell Sci 2007; 120(Pt 8): 14691479.
  • 260
    Serrador JM, Cabrero JR, Sancho D, Mittelbrunn M, Urzainqui A, Sanchez-Madrid F. HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization. Immunity 2004; 20(4): 417428.
  • 261
    Zhang Y, Li N, Caron C, Matthias G, Hess D, Khochbin S, Matthias P. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 2003; 22(5): 11681179.
  • 262
    Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP. HDAC6 is a microtubule-associated deacetylase. Nature 2002; 417(6887): 455458.
  • 263
    Qiu L, Burgess A, Fairlie DP, Leonard H, Parsons PG, Gabrielli BG. Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol Biol Cell 2000; 11(6): 20692083.
  • 264
    Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SI RT1. J Biol Chem 2002; 277(47): 4509945107.
  • 265
    Grozinger CM, Chao ED, Blackwell HE, Moazed D, Schreiber SL. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem 2001; 276(42): 3883738843.
  • 266
    Bedalov A, Gatbonton T, Irvine WP, Gottschling DE, Simon JA. Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci USA 2001; 98(26): 1511315118.
  • 267
    Posakony J, Hirao M, Stevens S, Simon JA, Bedalov A. Inhibitors of Sir2: Evaluation of splitomicin analogues. J Med Chem 2004; 47(10): 26352644.
  • 268
    Pagans S, Pedal A, North BJ, Kaehlcke K, Marshall BL, Dorr A, Hetzer-Egger C, Henklein P, Frye R, McBurney MW, Hruby H, Jung M, Verdin E, Ott M. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol 2005; 3(2): e41.
  • 269
    Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425(6954): 191196.
  • 270
    Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, Napper A, Curtis R, DiStefano PS, Fields S, Bedalov A, Kennedy BK. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 2005; 280(17): 1703817045.
  • 271
    Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M, Horinouchi S. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc Natl Acad Sci USA 2001; 98(1): 8792.
  • 272
    Kruh J. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol Cell Biochem 1982; 42(2): 6582.
  • 273
    Stadtman ER, Barker HA. Fatty acid synthesis by enzyme preparations of Clostridium kluyveri; a consideration of postulated 4-carbon intermediates in butyrate synthesis. J Biol Chem 1949; 181(1): 221235.
  • 274
    Jose B, Oniki Y, Kato T, Nishino N, Sumida Y, Yoshida M. Novel histone deacetylase inhibitors: Cyclic tetrapeptide with trifluoromethyl and pentafluoroethyl ketones. Bioorg Med Chem Lett 2004; 14(21): 53435346.
  • 275
    Nishino N, Jose B, Okamura S, Ebisusaki S, Kato T, Sumida Y, Yoshida M. Cyclic tetrapeptides bearing a sulfhydryl group potently inhibit histone deacetylases. Org Lett 2003; 5(26): 50795082.
  • 276
    Biel M, Wascholowski V, Giannis A. Epigenetics—An epicenter of gene regulation: Histones and histone-modifying enzymes. Angew Chem Int Ed Engl 2005; 44(21): 31863216.
  • 277
    Gurley LR, D'Anna JA, Barham SS, Deaven LL, Tobey RA. Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. Eur J Biochem 1978; 84(1): 115.
  • 278
    Wei Y, Mizzen CA, Cook RG, Gorovsky MA, Allis CD. Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc Natl Acad Sci USA 1998; 95(13): 74807484.
  • 279
    Aihara H, Nakagawa T, Yasui K, Ohta T, Hirose S, Dhomae N, Takio K, Kaneko M, Takeshima Y, Muramatsu M, Ito T. Nucleosomal histone kinase-1 phosphorylates H2A Thr 119 during mitosis in the early Drosophila embryo. Genes Dev 2004; 18(8): 877888.
  • 280
    Dai J, Sultan S, Taylor SS, Higgins JM. The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev 2005; 19(4): 472488.
  • 281
    Ota T, Suto S, Katayama H, Han ZB, Suzuki F, Maeda M, Tanino M, Terada Y, Tatsuka M. Increased mitotic phosphorylation of histone H3 attributable to AIM-1/Aurora-B overexpression contributes to chromosome number instability. Cancer Res 2002; 62(18): 51685177.
  • 282
    Pascreau G, Arlot-Bonnemains Y, Prigent C. Phosphorylation of histone and histone-like proteins by aurora kinases during mitosis. Prog Cell Cycle Res 2003; 5: 369374.
  • 283
    Choi HS, Choi BY, Cho YY, Zhu F, Bode AM, Dong Z. Phosphorylation of Ser28 in histone H3 mediated by mixed lineage kinase-like mitogen-activated protein triple kinase alpha. J Biol Chem 2005; 280(14): 1354513553.
  • 284
    Dong Z, Bode AM. The role of histone H3 phosphorylation (Ser10 and Ser28) in cell growth and cell transformation. Mol Carcinog 2006; 45(6): 416421.
  • 285
    Davie JR. MSK1 and MSK2 mediate mitogen- and stress-induced phosphorylation of histone H3: A controversy resolved. Sci STKE 2003; 2003(195): PE33.
  • 286
    van Attikum H, Gasser SM. The histone code at DNA breaks: A guide to repair? Nat Rev 2005; 6(10): 757765.
  • 287
    Stiff T, O'Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 2004; 64(7): 23902396.
  • 288
    Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 2001; 276(45): 4246242467.
  • 289
    Sakakura C, Hagiwara A, Yasuoka R, Fujita Y, Nakanishi M, Masuda K, Shimomura K, Nakamura Y, Inazawa J, Abe T, Yamagishi H. Tumour-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation. Br J Cancer 2001; 84(6): 824831.
  • 290
    Katayama H, Ota T, Jisaki F, Ueda Y, Tanaka T, Odashima S, Suzuki F, Terada Y, Tatsuka M. Mitotic kinase expression and colorectal cancer progression. J Natl Cancer Inst 1999; 91(13): 11601162.
  • 291
    Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B, Schryver B, Flanagan P, Clairvoyant F, Ginther C, Chan CS, Novotny M, Slamon DJ, Plowman GD. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 1998; 17(11): 30523065.
  • 292
    Adams RR, Eckley DM, Vagnarelli P, Wheatley SP, Gerloff DL, Mackay AM, Svingen PA, Kaufmann SH, Earnshaw WC. Human INCENP colocalizes with the Aurora-B/AIRK2 kinase on chromosomes and is overexpressed in tumour cells. Chromosoma 2001; 110(2): 6574.
  • 293
    Tatsuka M, Katayama H, Ota T, Tanaka T, Odashima S, Suzuki F, Terada Y. Multinuclearity and increased ploidy caused by overexpression of the aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res 1998; 58(21): 48114816.
  • 294
    Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, Brinkley BR, Sen S. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 1998; 20(2): 189193.
  • 295
    Balmain A, Gray J, Ponder B. The genetics and genomics of cancer. Nat Genet 2003; 33 (3s): 238244.
  • 296
    Nowak SJ, Corces VG. Phosphorylation of histone H3: A balancing act between chromosome condensation and transcriptional activation. Trends Genet 2004; 20(4): 214220.
  • 297
    Ditchfield C, Johnson VL, Tighe A, Ellston R, Haworth C, Johnson T, Mortlock A, Keen N, Taylor SS. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 2003; 161(2): 267280.
  • 298
    Gadea BB, Ruderman JV. Aurora kinase inhibitor ZM447439 blocks chromosome-induced spindle assembly, the completion of chromosome condensation, and the establishment of the spindle integrity checkpoint in Xenopus egg extracts. Mol Biol Cell 2005; 16(3): 13051318.
  • 299
    Heron NM, Anderson M, Blowers DP, Breed J, Eden JM, Green S, Hill GB, Johnson T, Jung FH, McMiken HH, Mortlock AA, Pannifer AD, Pauptit RA, Pink J, Roberts NJ, Rowsell S. SAR and inhibitor complex structure determination of a novel class of potent and specific Aurora kinase inhibitors. Bioorg Med Chem Lett 2006; 16(5): 13201323.
  • 300
    Mortlock AA, Keen NJ, Jung FH, Heron NM, Foote KM, Wilkinson RW, Green S. Progress in the development of selective inhibitors of aurora kinases. Curr Top Med Chem 2005; 5(8): 807821.
  • 301
    Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T, Graham JA, Demur C, Hercend T, Diu-Hercend A, Su M, Golec JM, Miller KM. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 2004; 10(3): 262267.
  • 302
    Inche AG, La Thangue NB. Chromatin control and cancer-drug discovery: Realizing the promise. Drug Discov Today 2006; 11(3–4): 97109.
  • 303
    Ladygina NG, Latsis RV, Yen T. Effect of the pharmacological agent hesperadin on breast and prostate tumor cultured cells. Biomed Khim 2005; 51(2): 170176.
  • 304
    Sessa F, Mapelli M, Ciferri C, Tarricone C, Areces LB, Schneider TR, Stukenberg PT, Musacchio A. Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol Cell 2005; 18(3): 379391.
  • 305
    Guo XW, Th'ng JP, Swank RA, Anderson HJ, Tudan C, Bradbury EM, Roberge M. Chromosome condensation induced by fostriecin does not require p34cdc2 kinase activity and histone H1 hyperphosphorylation, but is associated with enhanced histone H2A and H3 phosphorylation. EMBO J 1995; 14(5): 976985.
  • 306
    Ajiro K, Yoda K, Utsumi K, Nishikawa Y. Alteration of cell cycle-dependent histone phosphorylations by okadaic acid. Induction of mitosis-specific H3 phosphorylation and chromatin condensation in mammalian interphase cells. J Biol Chem 1996; 271(22): 1319713201.
  • 307
    Murnion ME, Adams RR, Callister DM, Allis CD, Earnshaw WC, Swedlow JR. Chromatin-associated protein phosphatase 1 regulates aurora-B and histone H3 phosphorylation. J Biol Chem 2001; 276(28): 2665626665.
  • 308
    Nowak SJ, Pai CY, Corces VG. Protein phosphatase 2A activity affects histone H3 phosphorylation and transcription in Drosophila melanogaster. Mol Cell Biol 2003; 23(17): 61296138.
  • 309
    McCluskey A, Sim AT, Sakoff JA. Serine-threonine protein phosphatase inhibitors: Development of potential therapeutic strategies. J Med Chem 2002; 45(6): 11511175.
  • 310
    Sakurada K, Zheng B, Kuo JF. Comparative effects of protein phosphatase inhibitors (okadaic acid and calyculin A) on human leukemia HL60, HL60/ADR and K562 cells. Biochem Biophys Res Commun 1992; 187(1): 488492.
  • 311
    Leopold WR, Shillis JL, Mertus AE, Nelson JM, Roberts BJ, Jackson RC. Anticancer activity of the structurally novel antibiotic Cl-920 and its analogues. Cancer Res 1984; 44(5): 19281932.
  • 312
    Kato Y, Fusetani N, Matsunaga S, Hashimoto K, Fijita S, Furuya T, Calyculin A. A novel antitumour metabolite from the marine sponge Discodermia calyx. J Am Chem Soc 1986; 108: 27802781.
  • 313
    Matsui Y, Hayashi K. Epigenetic regulation for the induction of meiosis. Cell Mol Life Sci 2007; 64(3): 257262.
  • 314
    Cohen-Armon M, Visochek L, Katzoff A, Levitan D, Susswein AJ, Klein R, Valbrun M, Schwartz JH. Long-term memory requires polyADP-ribosylation. Science 2004; 304(5678): 18201822.
  • 315
    Ame JC, Spenlehauer C, de Murcia G. The PARP superfamily. Bioessays 2004; 26(8): 882893.
  • 316
    Schreiber V, Dantzer F, Ame JC, de Murcia G. Poly(ADP-ribose): Novel functions for an old molecule. Nat Rev 2006; 7(7): 517528.
  • 317
    Klenova E, Ohlsson R. Poly(ADP-ribosyl)ation and epigenetics. Is CTCF PARt of the plot? Cell Cycle 2005; 4(1): 96101.
  • 318
    Atorino L, Alvarez-Gonzalez R, Cardone A, Lepore I, Farina B, Quesada P. Metabolic changes in the poly(ADP-ribosyl)ation pathway of differentiating rat germinal cells. Arch Biochem Biophys 2000; 381(1): 111118.
  • 319
    Virag L, Szabo C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 2002; 54(3): 375429.
  • 320
    Woon EC, Threadgill MD. Poly(ADP-ribose)polymerase inhibition—Where now? Curr Med Chem 2005; 12(20): 23732392.
  • 321
    Davidovic L, Vodenicharov M, Affar EB, Poirier GG. Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp Cell Res 2001; 268(1): 713.
  • 322
    Oliver FJ, Menissier-de Murcia J, Nacci C, Decker P, Andriantsitohaina R, Muller S, de la Rubia G, Stoclet JC, de Murcia G. Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J 1999; 18(16): 44464454.
  • 323
    Decker P, Muller S. Modulating poly (ADP-ribose) polymerase activity: Potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr Pharm Biotechnol 2002; 3(3): 275283.
  • 324
    Zingarelli B, Salzman AL, Szabo C. Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ Res 1998; 83(1): 8594.
  • 325
    Szabo C. PARP as a drug target for the therapy of diabetic cardiovascular dysfunction. Drug News Perspect 2002; 15(4): 197205.
  • 326
    Ivana Scovassi A, Diederich M. Modulation of poly(ADP-ribosylation) in apoptotic cells. Biochem Pharmacol 2004; 68(6): 10411047.
  • 327
    Jagtap P, Szabo C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 2005; 4(5): 421440.
  • 328
    Tong WM, Cortes U, Wang ZQ. Poly(ADP-ribose) polymerase: A guardian angel protecting the genome and suppressing tumorigenesis. Biochim Biophys Acta 2001; 1552(1): 2737.
  • 329
    Masutani M, Nakagama H, Sugimura T. Poly(ADP-ribose) and carcinogenesis. Genes Chromosomes Cancer 2003; 38(4): 339348.
  • 330
    Das BR. Increased ADP-ribosylation of histones in oral cancer. Cancer Lett 1993; 73(1): 2934.
  • 331
    Southan GJ, Szabo C. Poly(ADP-ribose) polymerase inhibitors. Curr Med Chem 2003; 10(4): 321340.
  • 332
    Curtin NJ. PARP inhibitors for cancer therapy. Expert Rev Mol Med 2005; 7(4): 120.
  • 333
    Purnell MR, Whish WJ. Novel inhibitors of poly(ADP-ribose) synthetase. Biochem J 1980; 185(3): 775777.
  • 334
    Banasik M, Komura H, Shimoyama M, Ueda K. Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J Biol Chem 1992; 267(3): 15691575.
  • 335
    Tseng A, Jr., Lee WM, Jakobovits EB, Kirsten E, Hakam A, McLick J, Buki K, Kun E. Prevention of tumorigenesis of oncogene-transformed rat fibroblasts with DNA site inhibitors of poly(ADP ribose) polymerase. Proc Natl Acad Sci USA 1987; 84(4): 11071111.
  • 336
    Horvath EM, Szabo C. Poly(ADP-ribose) polymerase as a drug target for cardiovascular disease and cancer: An update. Drug News Perspect 2007; 20(3): 171181.
  • 337
    Virag L, Scott GS, Antal-Szalmas P, O'Connor M, Ohshima H, Szabo C. Requirement of intracellular calcium mobilization for peroxynitrite-induced poly(ADP-ribose) synthetase activation and cytotoxicity. Mol Pharmacol 1999; 56(4): 824833.
  • 338
    Karczewski JM, Peters JG, Noordhoek J. Prevention of oxidant-induced cell death in Caco-2 colon carcinoma cells after inhibition of poly(ADP-ribose) polymerase and Ca2+ chelation: Involvement of a common mechanism. Biochem Pharmacol 1999; 57(1): 1926.
  • 339
    Virag L, Szabo C. Purines inhibit poly(ADP-ribose) polymerase activation and modulate oxidant-induced cell death. FASEB J 2001; 15(1): 99107.
  • 340
    Delaney CA, Wang LZ, Kyle S, White AW, Calvert AH, Curtin NJ, Durkacz BW, Hostomsky Z, Newell DR. Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly(adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin Cancer Res 2000; 6(7): 28602867.
  • 341
    Tentori L, Portarena I, Vernole P, De Fabritiis P, Madaio R, Balduzzi A, Roy R, Bonmassar E, Graziani G. Effects of single or split exposure of leukemic cells to temozolomide, combined with poly(ADP-ribose) polymerase inhibitors on cell growth, chromosomal aberrations and base excision repair components. Cancer Chemother Pharmacol 2001; 47(4): 361369.
  • 342
    Tentori L, Portarena I, Bonmassar E, Graziani G. Combined effects of adenovirus-mediated wild-type p53 transduction, temozolomide and poly (ADP-ribose) polymerase inhibitor in mismatch repair deficient and non-proliferating tumor cells. Cell Death Differ 2001; 8(5): 457469.
  • 343
    Curtin NJ, Wang LZ, Yiakouvaki A, Kyle S, Arris CA, Canan-Koch S, Webber SE, Durkacz BW, Calvert HA, Hostomsky Z, Newell DR. Novel poly(ADP-ribose) polymerase-1 inhibitor, AG14361, restores sensitivity to temozolomide in mismatch repair-deficient cells. Clin Cancer Res 2004; 10(3): 881889.
  • 344
    Chalmers AJ. Poly(ADP-ribose) polymerase-1 and ionizing radiation: Sensor, signaller and therapeutic target. Clin Oncol (R Coll Radiol) 2004; 16(1): 2939.
  • 345
    Yung TM, Sato S, Satoh MS. Poly(ADP-ribosyl)ation as a DNA damage-induced post-translational modification regulating poly(ADP-ribose) polymerase-1-topoisomerase I interaction. J Biol Chem 2004; 279(38): 3968639696.
  • 346
    Malanga M, Althaus FR. Poly(ADP-ribose) reactivates stalled DNA topoisomerase I and induces DNA strand break resealing. J Biol Chem 2004; 279(7): 52445248.
  • 347
    Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S, Durkacz BW, Hostomsky Z, Kumpf RA, Kyle S, Li J, Maegley K, Newell DR, Notarianni E, Stratford IJ, Skalitzky D, Thomas HD, Wang LZ, Webber SE, Williams KJ, Curtin NJ. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst 2004; 96(1): 5667.
  • 348
    Purnell MR, Whish WJ. Novel inhibitors of poly(ADP-ribose) synthetase. Biochem J 1980; 185(3): 775777.
  • 349
    Racz I, Tory K, Gallyas F, Jr., Berente Z, Osz E, Jaszlits L, Bernath S, Sumegi B, Rabloczky G, Literati-Nagy P. BGP-15—A novel poly(ADP-ribose) polymerase inhibitor—Protects against nephrotoxicity of cisplatin without compromising its antitumor activity. Biochem Pharmacol 2002; 63(6): 10991111.
  • 350
    Suto MJ, Turner WR, Arundel-Suto CM, Werbel LM, Sebolt-Leopold JS. Dihydroisoquinolinones: The design and synthesis of a new series of potent inhibitors of poly(ADP-ribose) polymerase. Anticancer Drug Des 1991; 6(2): 107117.
  • 351
    Watson CJ, Whish WJ, Threadgill MD. Synthesis of 3-substituted benzamides and 5-substituted isoquinolin-1(2H)-ones and preliminary evaluation as inhibitors of poly(ADP-ribose)polymerase (PARP). Bioorg Med Chem 1998; 6: 721734.
  • 352
    Chiarugi A, Meli E, Calvani M, Picca R, Baronti R, Camaioni E, Costantino G, Marinozzi M, Pellegrini-Giampietro DE, Pellicciari R, Moroni F. Novel isoquinolinone-derived inhibitors of poly(ADP-ribose) polymerase-1: Pharmacological characterization and neuroprotective effects in an in vitro model of cerebral ischemia. J Pharmacol Exp Ther 2003; 305(3): 943949.
  • 353
    de Murcia G, Menissier de Murcia J. Poly(ADP-ribose) polymerase: A molecular nick-sensor. Trends Biochem Sci 1994; 19(4): 172176.
  • 354
    Schlicker A, Peschke P, Burkle A, Hahn EW, Kim JH. 4-Amino-1,8-naphthalimide: A novel inhibitor of poly(ADP-ribose) polymerase and radiation sensitizer. Int J Radiat Biol 1999; 75(1): 91100.
  • 355
    Skalitzky DJ, Marakovits JT, Maegley KA, Ekker A, Yu XH, Hostomsky Z, Webber SE, Eastman BW, Almassy R, Li J, Curtin NJ, Newell DR, Calvert AH, Griffin RJ, Golding BT. Tricyclic benzimidazoles as potent poly(ADP-ribose) polymerase-1 inhibitors. J Med Chem 2003; 46(2): 210213.
  • 356
    Iwashita A, Mihara K, Yamazaki S, Matsuura S, Ishida J, Yamamoto H, Hattori K, Matsuoka N, Mutoh S. A new poly(ADP-ribose) polymerase inhibitor, FR261529 [2-(4-chlorophenyl)-5-quinoxalinecarboxamide], ameliorates methamphetamine-induced dopaminergic neurotoxicity in mice. J Pharmacol Exp Ther 2004; 310(3): 11141124.
  • 357
    Hattori K, Kido Y, Yamamoto H, Ishida J, Kamijo K, Murano K, Ohkubo M, Kinoshita T, Iwashita A, Mihara K, Yamazaki S, Matsuoka N, Teramura Y, Miyake H. Rational approaches to discovery of orally active and brain-penetrable quinazolinone inhibitors of poly(ADP-ribose)polymerase. J Med Chem 2004; 47(17): 41514154.
  • 358
    Griffin RJ, Srinivasan S, Bowman K, Calvert AH, Curtin NJ, Newell DR, Pemberton LC, Golding BT. Resistance-modifying agents. 5. Synthesis and biological properties of quinazolinone inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP). J Med Chem 1998; 41(26): 52475256.
  • 359
    Iwashita A, Hattori K, Yamamoto H, Ishida J, Kido Y, Kamijo K, Murano K, Miyake H, Kinoshita T, Warizaya M, Ohkubo M, Matsuoka N, Mutoh S. Discovery of quinazolinone and quinoxaline derivatives as potent and selective poly(ADP-ribose) polymerase-1/2 inhibitors. FEBS Lett 2005; 579(6): 13891393.
  • 360
    Di Paola R, Mazzon E, Muia C, Terrana D, Greco S, Britti D, Santori D, Oteri G, Cordasco G, Cuzzocrea S. 5-Aminoisoquinolin-1(2H)-one, a water-soluble poly (ADP-ribose) polymerase (PARP) inhibitor reduces the evolution of experimental periodontitis in rats. J Clin Periodontol 2007; 34(2): 95102.
  • 361
    Jagtap P, Soriano FG, Virag L, Liaudet L, Mabley J, Szabo E, Hasko G, Marton A, Lorigados CB, Gallyas F, Jr., Sumegi B, Hoyt DG, Baloglu E, VanDuzer J, Salzman AL, Southan GJ, Szabo C. Novel phenanthridinone inhibitors of poly (adenosine 5′-diphosphate-ribose) synthetase: Potent cytoprotective and antishock agents. Crit Care Med 2002; 30(5): 10711082.
  • 362
    Abdelkarim GE, Gertz K, Harms C, Katchanov J, Dirnagl U, Szabo C, Endres M. Protective effects of PJ34, a novel, potent inhibitor of poly(ADP-ribose) polymerase (PARP) in in vitro and in vivo models of stroke. Int J Mol Med 2001; 7(3): 255260.
  • 363
    Szabo G, Soos P, Mandera S, Heger U, Flechtenmacher C, Bahrle S, Seres L, Cziraki A, Gries A, Zsengeller Z, Vahl CF, Hagl S, Szabo C. INO-1001 a novel poly(ADP-ribose) polymerase (PARP) inhibitor improves cardiac and pulmonary function after crystalloid cardioplegia and extracorporal circulation. Shock 2004; 21(5): 426432.
  • 364
    Szabo C, Virag L, Cuzzocrea S, Scott GS, Hake P, O'Connor MP, Zingarelli B, Salzman A, Kun E. Protection against peroxynitrite-induced fibroblast injury and arthritis development by inhibition of poly(ADP-ribose) synthase. Proc Natl Acad Sci USA 1998; 95(7): 38673872.
  • 365
    Tanaka Y, Matsunami N, Yoshihara K. Inhibition of ADP-ribosylation of histone by diadenosine 5′, 5‴-p (1), p(4)-tetraphosphate. Biochem Biophys Res Commun 1981; 99(3): 837843.
  • 366
    Tsai YJ, Aoki T, Maruta H, Abe H, Sakagami H, Hatano T, Okuda T, Tanuma S. Mouse mammary tumor virus gene expression is suppressed by oligomeric ellagitannins, novel inhibitors of poly(ADP-ribose) glycohydrolase. J Biol Chem 1992; 267(20): 1443614442.
  • 367
    Aoki K, Nishimura K, Abe H, Maruta H, Sakagami H, Hatano T, Okuda T, Yoshida T, Tsai YJ, Uchiumi F, et al. Novel inhibitors of poly(ADP-ribose) glycohydrolase. Biochim Biophys Acta 1993; 1158(3): 251256.
  • 368
    Slama JT, Aboul-Ela N, Goli DM, Cheesman BV, Simmons AM, Jacobson MK. Specific inhibition of poly(ADP-ribose) glycohydrolase by adenosine diphosphate (hydroxymethyl)pyrrolidinediol. J Med Chem 1995; 38(2): 389393.
  • 369
    Tavassoli M, Tavassoli MH, Shall S. Effect of DNA intercalators on poly(ADP-ribose) glycohydrolase activity. Biochim Biophys Acta 1985; 827(3): 228234.
  • 370
    Lu XC, Massuda E, Lin Q, Li W, Li JH, Zhang J. Post-treatment with a novel PARG inhibitor reduces infarct in cerebral ischemia in the rat. Brain Res 2003; 978(1–2): 99103.
  • 371
    Masutani M, Shimokawa T, Igarashi M, Hamada M, Shibata A, Oami S, Nozaki T, Nakagama H, Sugimura T, Takeuchi T, Hori M. Inhibition of poly(ADP-ribose) glycohydrolase activity by cyclic peptide antibiotics containing piperazic acid residues. Proc Jpn Acad Ser B 2002; 78: 1517.
  • 372
    Biel M, Wascholowski V, Giannis A. A fatal affair: The ubiquitinylation of proteins. Angew Chem Int Ed Engl 2004; 43(47): 64146416.
  • 373
    Osley MA, Fleming AB, Kao CF. Histone ubiquitylation and the regulation of transcription. Results Probl Cell Differ 2006; 41: 4775.
  • 374
    Pickart CM, Eddins MJ. Ubiquitin: Structures, functions, mechanisms. Biochim Biophys Acta 2004; 1695(1–3): 5572.
  • 375
    Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 2004; 1695(1–3): 189207.
  • 376
    Muratani M, Tansey WP. How the ubiquitin-proteasome system controls transcription. Nat Rev 2003; 4(3): 192201.
  • 377
    Briggs SD, Xiao T, Sun ZW, Caldwell JA, Shabanowitz J, Hunt DF, Allis CD, Strahl BD. Gene silencing: Trans-histone regulatory pathway in chromatin. Nature 2002; 418(6897): 498.
  • 378
    Dover J, Schneider J, Tawiah-Boateng MA, Wood A, Dean K, Johnston M, Shilatifard A. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem 2002; 277(32): 2836828371.
  • 379
    Ezhkova E, Tansey WP. Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol Cell 2004; 13(3): 435442.
  • 380
    Li SJ, Hochstrasser M. A new protease required for cell-cycle progression in yeast. Nature 1999; 398(6724): 246251.
  • 381
    Gill G. Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr Opin Genet Dev 2003; 13(2): 108113.
  • 382
    Yeh ET, Gong L, Kamitani T. Ubiquitin-like proteins: New wines in new bottles. Gene 2000; 248(1–2): 114.
  • 383
    Mukhopadhyay D, Dasso M. Modification in reverse: The SUMO proteases. Trends Biochem Sci 2007; 32(6): 286295.
  • 384
    Shiio Y, Eisenman RN. Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 2003; 100(23): 1322513230.
  • 385
    Gill G. Something about SUMO inhibits transcription. Curr Opin Genet Dev 2005; 15(5): 536541.
  • 386
    Yang SH, Sharrocks AD. SUMO promotes HDAC-mediated transcriptional repression. Mol Cell 2004; 13(4): 611617.
  • 387
    Wong BR, Parlati F, Qu K, Demo S, Pray T, Huang J, Payan DG, Bennett MK. Drug discovery in the ubiquitin regulatory pathway. Drug Discov Today 2003; 8(16): 746754.
  • 388
    Pray TR, Parlati F, Huang J, Wong BR, Payan DG, Bennett MK, Issakani SD, Molineaux S, Demo SD. Cell cycle regulatory E3 ubiquitin ligases as anticancer targets. Drug Resist Updat 2002; 5(6): 249258.
  • 389
    Berleth ES, Kasperek EM, Grill SP, Braunscheidel JA, Graziani LA, Pickart CM. Inhibition of ubiquitin-protein ligase (E3) by mono- and bifunctional phenylarsenoxides. Evidence for essential vicinal thiols and a proximal nucleophile. J Biol Chem 1992; 267(23): 1640316411.
  • 390
    Swinney DC, Xu YZ, Scarafia LE, Lee I, Mak AY, Gan QF, Ramesha CS, Mulkins MA, Dunn J, So OY, Biegel T, Dinh M, Volkel P, Barnett J, Dalrymple SA, Lee S, Huber M. A small molecule ubiquitination inhibitor blocks NF-kappa B-dependent cytokine expression in cells and rats. J Biol Chem 2002; 277(26): 2357323581.
  • 391
    Minty A, Dumont X, Kaghad M, Caput D. Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 2000; 275(46): 3631636323.
  • 392
    Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M. Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 2005; 280(6): 41024110.
  • 393
    Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci USA 2004; 101(40): 1437314378.
  • 394
    Narayan A, Ji W, Zhang XY, Marrogi A, Graff JR, Baylin SB, Ehrlich M. Hypomethylation of pericentromeric DNA in breast adenocarcinomas. Int J Cancer 1998; 77(6): 833838.
  • 395
    Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res 2001; 61(8): 32253229.
  • 396
    Esteller M. Epigenetics provides a new generation of oncogenes and tumour-suppressor genes. Br J Cancer 2006; 94(2): 179183.
  • 397
    Hawkins RD, Ren B. Genome-wide location analysis: Insights on transcriptional regulation. Hum Mol Genet 2006; 15(Spec No 1): R1R7.
  • 398
    Bernstein BE, Schreiber SL. Global approaches to chromatin. Chem Biol 2002; 9(11): 11671173.
  • 399
    Kurdistani SK. Histone modifications as markers of cancer prognosis: A cellular view. Br J Cancer 2007; 97(1): 15.
  • 400
    Giles F, Fischer T, Cortes J, Garcia-Manero G, Beck J, Ravandi F, Masson E, Rae P, Laird G, Sharma S, Kantarjian H, Dugan M, Albitar M, Bhalla K. A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res 2006; 12(15): 46284635.
  • 401
    Sedgwick B, Bates PA, Paik J, Jacobs SC, Lindahl T. Repair of alkylated DNA: Recent advances. DNA Repair (Amst) 2007; 6(4): 429442.
  • 402
    Vaquero A, Loyola A, Reinberg D. The constantly changing face of chromatin. Sci Aging Knowledge Environ 2003; 2003(14): RE4.
  • 403
    Hymes J, Fleischhauer K, Wolf B. Biotinylation of histones by human serum biotinidase: Assessment of biotinyl-transferase activity in sera from normal individuals and children with biotinidase deficiency. Biochem Mol Med 1995; 56(1): 7683.
  • 404
    Narang MA, Dumas R, Ayer LM, Gravel RA. Reduced histone biotinylation in multiple carboxylase deficiency patients: A nuclear role for holocarboxylase synthetase. Hum Mol Genet 2004; 13(1): 1523.
  • 405
    Chew YC, Camporeale G, Kothapalli N, Sarath G, Zempleni J. Lysine residues in N-terminal and C-terminal regions of human histone H2A are targets for biotinylation by biotinidase. J Nutr Biochem 2006; 17(4): 225233.
  • 406
    Alaoui-Jamali MA, Dupre I, Qiang H. Prediction of drug sensitivity and drug resistance in cancer by transcriptional and proteomic profiling. Drug Resist Updat 2004; 7(4–5): 245255.
  • 407
    Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk. Curr Opin Cell Biol 2003; 15(2): 172183.
  • 408
    Lo Coco F, Zelent A, Kimchi A, Carducci M, Gore SD, Waxman S. Progress in differentiation induction as a treatment for acute promyelocytic leukemia and beyond. Cancer Res 2002; 62(19): 56185621.
  • 409
    Piekarz R, Bates S. A review of depsipeptide and other histone deacetylase inhibitors in clinical trials. Curr Pharm Des 2004; 10(19): 22892298.
  • 410
    Heery DM, Fischer PM. Pharmacological targeting of lysine acetyltransferases in human disease: A progress report. Drug Discov Today 2007; 12(1–2): 8899.