SEARCH

SEARCH BY CITATION

References

  • Allen, B. (1994). Perceptual speed, learning and information retrieval performance. In Proceedings of the 17th ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 7180).
  • Al-Maskari, A. & Sanderson, M. (2010) A review of factors influencing user satisfaction in information retrieval. Journal of the American Society for Information Science, 61 (5): 859868.
  • Beaulieu, M., Robertson, S. & Rasmussen, E. (1996). Evaluating interactive systems in TREC. Journal of the American Society for Information Science, 47 (1): 8594.
  • Belkin, N.J. (2008). Some(what) grand challenges for information retrieval. ACM SIGIR. Forum Archive, 42 (1): 4754.
  • Belkin, N.J. & Vickery, A. (1985). Interaction in information systems: A review of research from document retrieval to knowledge-based systems. (LIR Report No 35). London: British Library
  • Borlund, P, (2003). The IIR evaluation model: a framework for evaluation of interactive information retrieval systems. Information Research, 8 (3), Paper No.152.
  • Borlund, P. & Ingwersen, P. (1997). The development of a method for the evaluation of interactive information retrieval systems. Journal of Documentation, 53 (3): 225250.
  • Cleverdon, C. W. & Keen, E.M. (1966). Factors determining the performance of indexing systems. Vol. 1: Design. Vol 2: Results. Cranfield, U.K: Aslib Cranfield Research Project.
  • Cooper, W. S. (1973). On selecting a measure of retrieval effectiveness. Part 1. Journal of the American Society for Information Science. 24 (2): 87100.
  • Dunlop, M. (1997). Time, relevance and interaction modeling for information retrieval. In Proceedings of the 20th ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 206213).
  • Geva, S., Kamps, J., Peters, C., Sakai, T., Trotman, A. and Voorhees, E. (editors) (2009). In Proceedings of the SIGIR 2009 Workshop on the Future of IR Evaluation. Boston, MA, USA.
  • Gwizdka, J. (2008). Revisiting search task difficulty: behavioral and individual difference measures. In Proceedings of the 71th Annual Meeting of the American Society for Information Science and Technology.
  • Hearst, M. (2009). Search User Interfaces. Cambridge University Press.
  • Jones, K. S. (1997). Readings in Information Retrieval, 147256. San Francisco: Morgan Kaufmann.
  • Kelly, D. (2009). Methods for evaluating interactive information retrieval systems with users. Foundations and Trends in Information Retrieval, 3 (1–2): 1224.
  • Kelly, D., Fu, X. & Shah, C. (2010) Effects of position and number of relevant documents retrieved on users' evaluations of system performance. ACM Transaction on Information System, 28 (2): 129.
  • Su, L. T. (1992). Evaluation measure for interactive information retrieval. Information Processing and Management, 28 (4): 503516.
  • Turpin, A. H. & Hersh, W. (2001). Why batch and user evaluations do notgive the same results. In Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 225231).
  • Voorhees, E. (1998). Variations in relevance judgments and the measurement of retrieval effectiveness. In Proceedings of the 21th ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 315323).
  • Voorhees, E. & Harman, D. (2001). Overview of the sixth Text REtrieval Conference (TREC-6). Information Processing and Management, 36 (1): 335.
  • Wright, T. P. (1936). Factors affecting the cost of airplanes. Journal of Aeronautical Sciences, 3, 122128.
  • Xu, Y. & Mease, D. (2009). Evaluating web search using task completion time. In Proceedings of the 32nd annual international ACM SIGIR conference on Research and Development in Information Retrieval (pp. 676677).