SEARCH

SEARCH BY CITATION

REFERENCES

  • Agrawal, R., Gollapudi, S., Halverson, A. & Ieong, S. (2009), Diversifying search results, in ‘WSDM '09: Proceedings of the Second ACM International Conference on Web Search and Data Mining’, ACM, pp. 514.
  • Beitzel, S. M., Jensen, E. C., Chowdhury, A., Grossman, D. & Frieder, O. (2004), Hourly analysis of a very large topically categorized web query log, in ‘Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval’, SIGIR '04, ACM, New York, NY, USA, pp. 321328. http://doi.acm.org/10.1145/1008992.1009048
  • Bendersky, M. & Croft, W. B. (2008), Discovering key concepts in verbose queries, in ‘Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval’, SIGIR '08, ACM, New York, NY, USA, pp. 491498. http://doi.acm.org/10.1145/1390334.1390419
  • Boyce, B. (1982), ‘Beyond topicality: A two stage view of relevance and the retrieval process’, Information Processing & Management 18(3), 105109. http://www.sciencedirect.com/science/article/pii/0306457382900334
  • Broder, A. (2002), ‘A taxonomy of web search’, SIGIR Forum 36, 310. http://doi.acm.org/10.1145/792550.792552
  • Carbonell, J. & Goldstein, J. (1998), The use of mmr, diversity-based reranking for reordering documents and producing summaries, in ‘SIGIR '98: Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval’, ACM, New York, NY, USA, pp. 335336.
  • Chen, H. & Karger, D. R. (2006), Less is more: probabilistic models for retrieving fewer relevant documents, in ‘Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval’, SIGIR '06, ACM, New York, NY, USA, pp. 429436. http://doi.acm.org/10.1145/1148170.1148245
  • Clough, P., Sanderson, M., Abouammoh, M., Navarro, S. & Paramita, M. (2009), Multiple approaches to analysing query diversity, in ‘SIGIR '09: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval’, ACM, New York, NY, USA, pp. 734735.
  • Cronen-Townsend, S., Zhou, Y. & Croft, W. B. (2002), Predicting query performance, in ‘SIGIR '02: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval’, ACM, New York, NY, USA, pp. 299306.
  • Dai, H. K., Zhao, L., Nie, Z., Wen, J.-R., Wang, L. & Li, Y. (2006), Detecting online commercial intention (oci), in ‘Proceedings of the 15th international conference on World Wide Web’, WWW y06, ACM, New York, NY, USA, pp. 829837. http://doi.acm.org/10.1145/1135777.1135902
  • Dou, Z., Song, R. & Wen, J.-R. (2007), A large-scale evaluation and analysis of personalized search strategies, in ‘Proceedings of the 16th international conference on World Wide Web’, WWW '07, ACM, New York, NY, USA, pp. 581590.
  • Gollapudi, S. & Sharma, A. (2009), An axiomatic approach for result diversification, in ‘WWW '09: Proceedings of the 18th international conference on World wide web’, ACM, New York, NY, USA, pp. 381390.
  • Gravano, L., Hatzivassiloglou, V. & Lichtenstein, R. (2003), Categorizing web queries according to geographical locality, in ‘Proceedings of the twelfth international conference on Information and knowledge management’, CIKM '03, ACM, New York, NY, USA, pp. 325333. http://doi.acm.org/10.1145/956863.956925
  • Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. & Witten, I. H. (2009), ‘The weka data mining software: An update’, SIGKDD Explorations 11(1).
  • He, J., Meij, E. & de Rijke, M. (2011), ‘Result diversification based on query-specific cluster ranking’, Journal of the American Society for Information Science and Technology 62(3), 550571. http://dx.doi.org/10.1002/asi.21468
  • Jansen, B. J., Booth, D. L. & Spink, A. (2009), ‘Patterns of query reformulation during web searching’, Journal of the American Society for Information Science and Technology 60(7), 13581371.
  • Jansen, B. J. & Spink, A. (2003), An analysis of web documents retrieved and viewed, in H. R. Arabnia & Y. Mun, eds, ‘International Conference on Internet Computing’, CSREA Press, pp. 6569.
  • Jansen, B. J. & Spink, A. (2006), ‘How are we searching the world wide web?: a comparison of nine search engine transaction logs’, Inf. Process. Manage. 42, 248263. http://dx.doi.org/10.1016/j.ipm.2004.10.007
  • Kang, I.-H. & Kim, G. (2003), Query type classification for web document retrieval, in ‘Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval’, SIGIR '03, ACM, New York, NY, USA, pp. 6471. http://doi.acm.org/10.1145/860435.860449
  • Li, Y., Zheng, Z. & Dai, H. K. (2005), ‘Kdd cup-2005 report: facing a great challenge’, SIGKDD Explor. Newsl. 7, 9199. http://doi.acm.org/10.1145/1117454.1117466
  • Lu, Y., Peng, F., Wei, X. & Dumoulin, B. (2010), Personalize web search results with user's location, in ‘Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval’, SIGIR '10, ACM, New York, NY, USA, pp. 763764. http://doi.acm.org/10.1145/1835449.1835604
  • Robertson, S. E. & Jones, K. S. (1976), ‘Relevance weighting of search terms’, Journal of the American Society for Information Science 27, 129146.
  • Ross, N. C. M. & Wolfram, D. (2000), ‘End user searching on the internet: An analysis of term pair topics submitted to the excite search engine’, Journal of the American Society for Information Science 51(10), 949958. http://dx.doi.org/10.1002/1097-4571 (2000)51:10<949::AID-ASI70>3.0.CO;2-5
  • Sanderson, M. (2008), Ambiguous queries: test collections need more sense, inSIGIR '08: Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval’, ACM, New York, NY, USA, pp. 499506.
  • Santos, R. L., Macdonald, C. & Ounis, I. (2010a), Exploiting query reformulations for web search result diversification, in ‘WWW '10: Proceedings of the 19th international conference on World wide web’, ACM, New York, NY, USA, pp. 881890.
  • Santos, R. L., Macdonald, C. & Ounis, I. (2010b), Selectively diversifying web search results, in ‘Proceedings of the 1 9th ACM international conference on Information and knowledge management’, CIKM y10, ACM, pp. 11791188. http://doi.acm.org/10.1145/1871437.1871586
  • Silverstein, C., Marais, H., Henzinger, M. & Moricz, M. (1999), ‘Analysis of a very large web search engine query log’, SIGIR Forum 33, 612. http://doi.acm.org/10.1145/331403.331405
  • Teevan, J., Dumais, S. T. & Liebling, D. J. (2008), To personalize or not to personalize: modeling queries with variation in user intent, in ‘Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval’, SIGIR '08, ACM, New York, NY, USA, pp. 163170. http://doi.acm.org/10.1145/1390334.1390364
  • Wang, J. & Zhu, J. (2009), Portfolio theory of information retrieval, inSIGIR '09: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval’, ACM, New York, NY, USA, pp. 115122.
  • Wang, Y. & Agichtein, E. (2010), Query ambiguity revisited: clickthrough measures for distinguishing informational and ambiguous queries, inHuman Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics’, HLT '10, Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 361364. http://portal.acm.org/citation.cfm?id=1857999.1858054
  • Welch, M. J., Cho, J. & Olston, C. (2011), Search result diversity for informational queries, in ‘Proceedings of the 20th international conference on World wide web’, WWW '11, ACM, New York, NY, USA, pp. 237246. http://doi.acm.org/10.1145/1963405.1963441