SEARCH

SEARCH BY CITATION

REFERENCES

  • Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In VLDB '94: Proceedings of the 1994 International Conference on Very Large Data Bases, pages 487499, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.
  • Bíró, I., Szabó, J., and Benczúr, A. A. (2008). Latent dirichlet allocation in web spam filtering. In AIRWeb '08: Proceedings of the 4th international workshop on Adversarial information retrieval on the web, pages 2932, New York, NY, USA. ACM.
  • Blei, D. and Lafferty, J. (2006). Correlated Topic Models. NIPS '06: Advances in Neural Information Processing Systems, 18:147.
  • Blei, D. M., Griffiths, T. L., Jordan, M. I., and Tenenbaum, J. B. (2004). Hierarchical topic models and the nested chinese restaurant process. In NIPS '04: Advances in Neural Information Processing Systems.
  • Blei, D. M. and Mcauliffe, J. D. (2007). Supervised topic models.
  • Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3: 9931022.
  • Boyd-Graber, J., Blei, D. M., and Zhu, X. (2007). A topic model for word sense disambiguation. In EMNLP '07: Proceedings of the 2007 conference on Empirical Methods in Natural Language Processing.
  • Brin, S., Motwani, R., Ullman, J. D., and Tsur, S. (1997). Dynamic itemset counting and implication rules for market basket data. In SIGMOD '97: Proceedings of the 1997 ACM SIGMOD international conference on Management of data, pages 255264, New York, NY, USA. ACM.
  • Cheng, H., Yan, X., Han, J., and wei Hsu, C. (2007). Discriminative frequent pattern analysis for effective classification. In In ICDE, pages 716725.
  • Dempster, A. P., Laird, N. M., and Rubin, D. B., (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of Royal Statist. Soc. B, 39: 138.
  • Ding, B., Lo, D., Han, J., and Khoo, S.-C. (2009). Efficient mining of closed repetitive gapped subsequences from a sequence database. In Proceedings of the 2009 IEEE International Conference on Data Engineering, ICDE '09, pages 1024–1035, Washington, DC, USA. IEEE Computer Society.
  • Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6): 721741.
  • Griffiths, T. L. and Steyvers, M. (2004). Finding scientific topics. Proc Natl Acad Sci USA, 101 Suppl 1:52285235.
  • Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without candidate generation. In SIGMOD '00: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pages 112, New York, NY, USA. ACM.
  • Hofmann, T. (1999). Probabilistic latent semantic indexing. In SIGIR '99: Proceedings of the 1999 international ACM SIGIR conference on research and development in Information Retrieval, pages 5057, New York, NY, USA. ACM.
  • Hörster, E., Lienhart, R., and Slaney, M. (2007). Image retrieval on large-scale image databases. In CIVR '07: Proceedings of the 2007 ACM international conference on Image and video retrieval, pages 1724, New York, NY, USA. ACM.
  • Lin, C. and He, Y. (2009). Joint sentiment/topic model for sentiment analysis. In CIKM '09: Proceedings of the 2009 ACM international Conference on Information and Knowledge Management, pages 375384, New York, NY, USA. ACM.
  • Liu, Y., Niculescu-Mizil, A., and Gryc, W. (2009). Topic-link lda: joint models of topic and author community. In ICML '09: Proceedings of the 2009 annual International Conference on Machine Learning, pages 665672, New York, NY, USA. ACM.
  • Mei, Q., Ling, X., Wondra, M., Su, H., and Zhai, C. (2007). Topic sentiment mixture: modeling facets and opinions in weblogs. In WWW '07: Proceedings of the 2007 international conference on World Wide Web, pages 171-180, New York, NY, USA. ACM.
  • Mimno, D., Wallach, H. M., Naradowsky, J., Smith, D. A., and Mccallum, A. (2009). Polylingual topic models. In EMNLP '09: Proceedings of the 2009 conference on Empirical Methods in Natural Language Processing.
  • Minka, T. P. and Lafferty, J. D. (2002). Expectation-propogation for the generative aspect model. In UAI, pages 352359.
  • Park, J. S., Chen, M.-S., and Yu, P. S. (1995). An effective hash-based algorithm for mining association rules. In SIGMOD '95: Proceedings of the 1995 ACM SIGMOD international conference on Management of data, pages 175186, New York, NY, USA. ACM.
  • Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. (1999). Discovering frequent closed itemsets for association rules. In ICDT '99: Proceedings of the 7th International Conference on Database Theory, pages 398416, London, UK. Springer-Verlag.
  • Pei, J., Han, J., and Mao, R. (2000). Closet: An efficient algorithm for mining frequent closed itemsets. In DMKD '00: Proceedings of the 2000 ACM SIGMOD workshop on research issues in Data Mining and Knowledge Discovery, pages 2130, New York, NY, USA. ACM.
  • Pei, J., Han, J., Mortazavi-asl, B., Pinto, H., Chen, Q., Dayal, U., and chun Hsu, M. (2001). Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. In ICDE '01: Proceedings of the 2001 International Conference on Data Engineering, page 215, Washington, DC, USA. IEEE Computer Society.
  • Phan, X.-H., Nguyen, L.-M., and Horiguchi, S. (2008). Learning to classify short and sparse text & web with hidden topics from large-scale data collections. In WWW '08: Proceeding of the 17th international conference on World Wide Web, pages 91100, New York, NY, USA. ACM.
  • Srikant, R. and Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improvements. In EDBT '96: Proceedings of the 1996 international conference on Extending Database Technology, pages 317. Springer-Verlag.
  • Teh, Y. W. and Görür, D. (2009). Indian buffet processes with power-law behavior. In Advances in Neural Information Processing Systems.
  • Titov, I. and McDonald, R. (2008a). A joint model of text and aspect ratings for sentiment summarization. In ACL '08: Proceedings of the 2008 annual meeting on Association for Computational Linguistics, pages 308316, Columbus, Ohio. Association for Computational Linguistics.
  • Titov, I. and McDonald, R. (2008b). Modeling online reviews with multi-grain topic models. In WWW '08: Proceedings of the 2008 international conference on World Wide Web, pages 111120, New York, NY, USA. ACM.
  • Wallach, H. M. (2006). Topic modeling: beyond bag-of-words. In ICML '06: Proceedings of the 2006 annual International Conference on Machine Learning, pages 977984, New York, NY, USA. ACM.
  • Wang, X., McCallum, A., and Wei, X. (2007). Topical n-grams: Phrase and topic discovery, with an application to information retrieval. In ICDM '07: Proceedings of the 2007 IEEE International Conference on Data Mining, pages 697702, Washington, DC, USA. IEEE Computer Society.
  • Wei, X. and Croft, W. B. (2006). Lda-based document models for ad-hoc retrieval. In SIGIR '06: Proceedings of the 2006 international ACM SIGIR conference on research and development in Information Retrieval, pages 178185, New York, NY, USA. ACM.
  • Xin, D., Han, J., Yan, X., and Cheng, H. (2005). Mining compressed frequent-pattern sets. In VLDB '05: Proceedings of the 31st international conference on Very large data bases, pages 709720. VLDB Endowment.
  • Yan, X., Han, J., and Afshar, R. (2003). Clospan: Mining closed sequential patterns in large datasets. In SDM'03: Proceedings of the 2003 SIAM international conference on Data Mining, pages 166177. SIAM.
  • Zaki, M. J. (2001). Spade: An efficient algorithm for mining frequent sequences. Machine Learning, 42(1-2): 3160.
  • Zaki, M. J. and jui Hsiao, C. (2002). Charm: An efficient algorithm for closed itemset mining. In SDM'02: Proceedings of the 2002 SIAM international conference on Data Mining, pages 457473, Arlington, VA, USA. SIAM.