SEARCH

SEARCH BY CITATION

References

  • Akaike H. 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6): 716723.
  • Ballester J, Giorgi F, Rodó X. 2010. Changes in European temperature extremes can be predicted from changes in PDF central statistics. Clim. Change 98: 277284.
  • Barrow EM, Hulme M. 1996. Changing probabilities of daily temperature extremes in the UK related to future global warming and changes in climate variability. Clim. Res. 6: 2131.
  • Beniston M, Stephenson DB. 2004. Extreme climatic events and their evolution under changing climatic conditions. Global Planet. Change 44: 19.
  • Brown SJ, Caesar J, Ferro CAT. 2008. Global changes in extreme daily temperature since 1950. J. Geophys. Res. 113: D05115.
  • Broyden CG. 1970. The convergence of a class of double-rank minimization algorithms 2, the new algorithm. J. Inst. Math. Appl. 6: 222231.
  • Coles S. 2001. An Introduction to Statistical Modelling of Extreme Values. Springer: London.
  • Coles S, Tawn T. 2005. Bayesian modelling of extreme surges on the UK east coast. Philos. Trans. R. Soc., A 363: 13871406.
  • Fletcher R. 1970. A new approach to variable-metric algorithms. Comput. J. 13: 317322.
  • Furrer EM, Katz RW. 2007. Generalized linear modelling approach to stochastic weather generators. Clim. Res. 34: 129144.
  • Goldfarb D. 1970. A family of variable-metric algorithms derived by variational means. Math. Comput. 24: 2326.
  • Jones PD, Horton EB, Folland CK, Hulme M, Parker DE, Basnett TA. 1999. The use of indices to identify changes in climatic extremes. Clim. Change 42: 131149.
  • McCullagh P, Nelder J. 1989. Generalized Linear Models. Chapman and Hall: London.
  • Maraun D, Rust HW, Osborn TJ. 2009. The annual cycle of heavy precipitation across the United Kingdom: a model based on extreme value statistics. Int. J. Climatol. 29(12): 17311744.
  • Menéndez M, Méndez FJ, Izaguirre C, Luceño A, Losada IJ. 2007. The influence of seasonality on estimating return values of significant wave height. Coastal Eng. 56: 211219.
  • R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna; ISBN 3-900051-07-0. http://www.R-project.org (accessed November 2011).
  • Richardson CW. 1981. Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res. 17: 182190.
  • S original (EVIS) by Alexander McNeil and R port by Alec Stephenson. 2008. evir: Extreme Values in R. R package version 1.6.
  • Shanno DF. 1970. Conditioning of Quasi-Newton methods for function minimization. Math. Comput. 24: 647656.
  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) 2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, UK and New York, NY.
  • Stern RD, Coe R. 1984. A model fitting analysis of daily rainfall data. J. R. Stat. Soc. Ser. A 147: 134.
  • Underwood FM. 2009. Describing long-term trends in precipitation using generalized additive models. J. Hydrol. 364: 285297.
  • Wever N. 2008. Effectieve Temperatuur en Graaddagen: Klimatologie en Klimaatscenario's. KNMI Publicatie 219. http://www.knmi.nl/bibliotheek/publicatiemetnr101.html (accessed November 2011).
  • Yan Z, Bate S, Chandler RE, Isham V, Wheater H. 2002a. An analysis of daily maximum wind speed in northwestern Europe using generalized linear models. J. Clim. 15: 20732088.
  • Yan Z, Jones PD, Davies TD, Moberg A, Bergström H, Camuffo D, Cocheo C, Maugeri M, Demarée GR, Verhoeve T, Thoen E, Barriendos M, Rodríguez R, Martín-Vide J, Yang C. 2002b. Trends of extreme temperatures in Europe and China based on daily observations. Clim. Change 53: 355392.