SEARCH

SEARCH BY CITATION

References

  • Aronica G, Hankin B, Beven K. 1998. Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data. Advances in Water Resources 22(4): 349365.
  • Coulson G, Blair G, Grace P, Taiani F, Joolia A, Lee K, Ueyama J, Sivaharan T. 2008. A generic component model for building systems software. ACM Transactions on Computer Systems 26(1): 445 online.
  • Dijkstra E. 1959. A note on two problems in connection with graphs. Numerische Mathematik 1: 269271.
  • Dust Networks. 2006a. Smartmesh XT 2135 mote data sheet, http://www.dustnetworks.com/docs/M2135.pdf.
  • Dust Networks. 2006b. Technical overview of TSMP, white paper, http://www.dustnetworks.com/docs/TSMP_Whitepaper.pdf.
  • Grace P, Coulson G, Blair G, Mathy L, Yeung WK, Cai W, Duce D, Cooper C. 2004. Pluggable overlay networks for grid computing. On The Move To Meaningful Internet Systems 2004: Coopls, Doa and Odbase, Pt 2, Proceedings 3291, 14631481.
  • Grace P, Hughes D, Porter B, Blair G, Coulson G, Taiani F. 2008. Experiences with open overlays: A middleware approach to network heterogeneity. In Proceedings of the European Conference on Computer Systems (EuroSys'08), Glasgow, UK.
  • Hughes D, Daude M, Coulson G, Blair G. 2008. Managing heterogeneous data flows in wireless sensor networks using a ‘split personality’ mote platform. In Proceedings of the 2nd International Workshop on SensorWebs, Databases and Mining in Networked Sensing Systems (SWDMNSS 2008), Turku.
  • Lees MJ, Young PC, Ferguson S, Beven KJ, Burns J. 1994. An adaptive flood warning scheme for the River Nith at Dumfries. In 2nd International Conference on River Flood Hydraulics, WhiteWR, WattsJ (eds).: Chichester, UK; New York.
  • Pappenberger F, Beven K, Frodsham K, Romanowicz R, Matgen P. 2007. Grasping the unavoidable subjectivity in calibration of flood inundation models: A vulnerability weighted approach. Journal of Hydrology 333(2–4): 275287.
  • Pappenberger F, Beven K, Horritt M, Blazkova S. 2005. Uncertainty in the calibration of effective roughness parameters in HES-RAS using inundation and downstream level observations. Journal of Hydrology 302(1–4): 4669.
  • Polastre J, Hil J, Culler D. 2004. Versatile low power media access for wireless sensor networks. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (Sensys'04), Baltimore, Maryland, US; 95107.
  • Romanowicz RJ, Young PC, Beven KJ. 2006. Data assimilation and adaptive forecasting of water levels in the River Severn catchment, United Kingdom. Water Resources Research 42(6): W06407.
  • Schweppe FC. 1965. Evaluation of likelihood functions for gaussian signals. IEEE Transactions on Information Theory 11(1): 6170.
  • Smith P, Beven K, Tych W, Hughes D, Coulson G, Blair G. 2008. The provision of site specific flood warnings using wireless sensor networks. In Proceeding of FLOODRisk2008, Oxford, UK.
  • Young PC. 1984. Recursive Estimation and Time Series Analysis: An Introduction. Springer Verlag: Berlin.
  • Young PC. 1998. Data-based mechanistic modelling of environmental, ecological, economic and engineering systems. Environmental Modelling & Software 13(2): 105122.
  • Young PC. 2002. Advances in real-time flood forecasting. Philosophical Transactions of the Royal Society of London Series A: Mathematical Physical and Engineering Sciences 360(1796): 14331450.
  • Young PC. 2003. Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the catchment scale. Hydrological Processes 17(11): 21952217.
  • Young PC. 2006. The data-based mechanistic approach to the modelling, forecasting and control of environmental systems. Annual Reviews in Control 30(2): 169182.
  • Young PC, Chotai A, Beven KJ. 2004. Data-based mechanistic modelling and the simplification of environmental systems. In Environmental Modelling: Finding Simplicity in Complexity, WainwrightJ, MullganM (eds). Wiley: Chichester, UK; New York 371388.
  • Young PC, Garnier H. 2006. Identification and estimation of continuous-time, data-based mechanistic (DBM) models for environmental systems. Environmental Modelling & Software 21(8): 10551072.
  • Young PC, McKenna P, Bruun J. 2001. Identification of non-linear stochastic systems by state dependent parameter estimation. International Journal of Control 74(18): 18371857.