SEARCH

SEARCH BY CITATION

References

  • Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716723, DOI: 10.1109/TAC.1974.1100705.
  • Hayhoe HN. 2000. Improvements of stochastic weather data generators for diverse climates. Climate Research 14: 7587.
  • Katz RW. 1977. Precipitation as a chain-dependent process. Journal of Applied Meteorology 16: 671676.
  • Katz RW. 1981. On some criteria for estimating the order of a Markov chain. Technometrics 23: 243249, DOI: 10.2307/1267787.
  • Katz RW. 1985. Probabilistic models. In Probability, Statistics, and Decision Making in the Atmospheric Sciences, Murphy AH, Katz RW (eds). Westview Press: Boulder, CO; 261288.
  • Katz RW, Parlange MB. 1998. Overdispersion phenomenon in stochastic modeling of precipitation. Journal of Climate 11: 591601.
  • Liu J, Williams JR, Wang X, Yang H. 2009. Using MODAWEC to generate daily weather data for the EPIC model. Environmental Modelling and Software 24: 655664, DOI: 10.1016/j.envsoft.2008.10.008.
  • Mhanna M, Bauwens W. 2009. Assessment of a single-site daily rainfall generator in the Middle East. In Proceedings of the 2nd International Conference on Environmental and Computer Science, Werner Bob (ed.). IEEE Computer Society: Dubai, UAE; 1418, DOI: 10.1109/ICECS.2009.19.
  • Ochola WO, Kerkides P. 2003. A markov chain simulation model for predicting critical wet and dry spells in Kenya: analysing rainfall events in the kano plains. Irrigation and Drainage 52: 327342, DOI: 10.1002/ird.094.
  • Richardson CW. 1981. Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resources Research 17: 182190, DOI: 10.1029/WR017i001p00182.
  • Sharma A, Lall U. 1999. A nonparametric approach for daily rainfall simulation. Mathematics and Computers in Simulation 48: 361371, DOI: 10.1016/S0378-4754(99)00016-6.
  • Siriwardena L, Srikanthan R, McMahon TA. 2002. Evaluation of two daily rainfall data generation models. Technical Report 02/14, Cooperative Research Centre for Catchment Hydrology: Victoria, Australia.
  • Srikanthan R, Chiew F. 2003. Stochastic models for generating annual, monthly and daily rainfall and climate data at a site. Technical Report 03/16, Cooperative Research Centre for Catchment Hydrology: Victoria, Australia.
  • Srikanthan R, Harrold TI, Sharma A, McMahon TA. 2005. Comparison of two approaches for generation of daily rainfall data. Stochastic Environmental Research and Risk Assessment 19: 215226, DOI: 10.1007/s00477-004-0226-0.
  • Srikanthan R, McMahon TA. 1985. Stochastic generation of rainfall and evaporation data. Technical Report 84, Australian Water Resources Council, Department of Resources and Energy: Canberra, Australia.
  • Srikanthan R, McMahon TA. 2001. Stochastic generation of annual, monthly and daily climate data: a review. Hydrology and Earth System Sciences 5: 653670, DOI: 10.5194/hess-5-653-2001.
  • Srikanthan R, Pegram GGS. 2009. A nested multisite daily rainfall stochastic generation model. Journal of Hydrology 371: 142153, DOI: 10.1016/j.jhydrol.2009.03.025.
  • Thom HCS. 1958. A note on the gamma distribution. Monthly Weather Review 86: 117122.
  • Vlček O, Huth R. 2009. Is daily precipitation Gamma-distributed?: adverse effects of an incorrect use of the Kolmogorov-Smirnov test. Atmospheric Research 93: 759766, DOI: 10.1016/j.atmosres.2009.03.005.
  • Wan H, Zhang X, Barrow EM. 2005. Stochastic modelling of daily precipitation for Canada. Atmosphere Ocean 43: 2332.
  • Wang QJ, Nathan RJ. 2002. A daily and monthly mixed model algorithm for stochastic generation of rainfall time series. 27th Hydrology and Water Resources Symposium, Melbourne, Australia.
  • Wang QJ, Nathan RJ. 2007. A method for coupling daily and monthly time scales in stochastic generation of rainfall series. Journal of Hydrology 346: 122130, DOI: 10.1016/j.jhydrol.2007.09.003.
  • Wilks DS. 1999. Simultaneous stochastic simulation of daily precipitation, temperature and solar radiation at multiple sites in complex terrain. Agricultural and Forest Meteorology 96: 85101, DOI: 10.1016/S0168-1923(99)00037-4.
  • Wilks DS. 2006. Statistical Methods in the Atmospheric Sciences. Academic Press: San Diego, CA.
  • Wilks DS, Wilby RL. 1999. The weather generation game: a review of stochastic weather models. Progress in Physical Geography 23: 329357, DOI: 10.1177/030913339902300302.
  • Woolhiser DA. 1992. Modelling daily precipitation—progress and problems. In Statistics in the Environmental and Earth Sciences, Walden AT, Guttorp P (eds). Edward Arnold: London, United Kingdom; 7189.
  • Zheng X, Katz RW. 2008. Mixture model of generalized chain-dependent processes and its application to simulation of interannual variability of daily rainfall. Journal of Hydrology 349: 191199, DOI:10.1016/j.jhydrol.2007.10.061.