SEARCH

SEARCH BY CITATION

References

  • Applequist S, Gahrs EG, Pfeffer RL, Niu X-F. 2002. Comparison of methodologies for probabilistic quantitative precipitation forecasting. Weather and Forecasting 17: 783799.
  • Betts AK. 1986. A new convective adjustment scheme. Part I: observational and theoretical basis. Quarterly Journal of the Royal Meteorological Society 112: 677691.
  • Chen F, Dudhia J. 2001. Coupling an advanced land surface—hydrology model with the Penn State—NCAR MM5 modeling system. Part I: model description and implementation. Monthly Weather Review 129: 569585.
  • Ebert EE. 2001. Ability of a poor man's ensemble to predict the probability and distribution of precipitation. Monthly Weather Review 129: 24612480.
  • Ebisuzaki W, Kalnay E. 1991. Ensemble experiments with a new lagged average forecasting scheme. C. P. No. 2300, CH1211. WMO: Geneva, Switzerland.
  • Eckel FA, Walters MK. 1998. Calibrated probabilistic quantitative precipitation forecasts based on the MRF ensemble. Weather and Forecasting 13: 11321147.
  • Gallus WA, Seagal M. 2004. Does increased predicted warm-season rainfall indicate enhanced likelihood of rain occurrence? Weather and Forecasting 19: 11271135.
  • Gneiting T, Raftery AE, Westveld AH III, Goldman T. 2005. Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Monthly Weather Review 133: 10981118.
  • Grell GA, Devenyi D. 2002. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters 29(14): 1693.
  • Hamill T. 2001. Interpretation of rank histograms for verifying ensemble forecasts. Monthly Weather Review 129: 550560.
  • Hamill T, Colucci SJ. 1998. Evaluation of Eta-RSM ensemble probabilitistic precipitation forecasts. Monthly Weather Review 126: 711724.
  • Hersbach H. 2000. Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather and Forecasting 15: 559570.
  • Hong S, Pan H. 1996. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Monthly Weather Review 10: 23222339.
  • Hou D, Kalnay E, Doregemeier KK. 2001. Objetive verification of the SAMEX'98 ensemble forecast. Monthly Weather Review 129: 7391.
  • Janjic ZI. 1994. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes. Monthly Weather Review 122: 927945.
  • Joyce RJ, Janowiak JE, Arkin PA, Xie P. 2004. CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology 5: 487503.
  • Kain JS. 2004. The Kain-Fritsch convective parameterization: an update. Journal of Applied Meteorology 43: 170181.
  • Krishnamurti TN, Kishtawal CM, LaRow TE, Bachiochi DR, Zhang Z, Willford CE, Gadgil S, Surendran S. 1999. Improved weather and seasonal climate forecast from multimodel superensemble. Science 285: 15481550.
  • Molteni F, Buizza R, Palmer TN, Petroliagis T. 1996. The ECMWF ensemble prediction system: methodology and validation. Quarterly Journal of the Royal Meteorological Society 122: 73119.
  • Palmer TN, Buizza R, Leutbecher M, Hagedorn R, Jung T, Rodwell M, Vitart F, Berner J, Hagel E, Lawrence A, Pappenberger F, Park Y-Y, von Bremen L, Gilmour I. 2007. The Ensemble Prediction System—Recent and Ongoing Developments, Technical Note TM 430. ECMWF: Reading, United Kingdom; 53 pp.
  • Park Y, Buizza R, Leutbecher M. 2008. TIGGE Preliminary results on comparing and combining ensembles. Quarterly Journal of the Royal Meteorological Society 134: 20292050.
  • Raftery A, Gneiting T, Balabdaoui F, Polakowski M. 2005. Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review 133: 11551174.
  • Ruiz J, Saulo C. 2011. How sensitive are probabilistic precipitation forecasts to the choice of calibration algorithms and the ensemble generation method? Part I: sensitivity to calibration methodology. Meteorological Applications (Submitted).
  • Ruiz J, Saulo C, Kalnay E. 2009. Comparison of methods to generate probabilistic quantitative precipitation forecasts over South America. Weather and Forecasting 24: 319336.
  • Ruiz J, Saulo C, Nogués-Paegle J. 2010. WRF model sensitivity to choice of parameterization over South America: validation against surface variables. Monthly Weather Review 138: 33423355.
  • Schaefer JT. 1990. The critical success index as an indicator of warning skill. Weather and Forecasting 5: 570575.
  • Schaffer CJ, Gallus AG, Segal M. 2011. Improving probabilistic ensemble forecasts of convection through the application of QPF-POP relationships. Weather and Forecasting, DOI: 10.1175/2010WAF2222447.1.
  • Silva Dias PL, Soares Moreira D, Neto GD. 2006. The MASTER Model Ensemble System (MSMES). Proceedings of the Eighth International Conference on Southern Hemisphere Meteorology and Oceanography. INPE: Foz do Iguazu, Brazil; 17511757.
  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG. 2005. A Description of the Advanced Research WRF Version 2. Technical Note TN-468 + STR. NCAR: Boulder, CO; 100 pp.
  • Sloughter J, Raftery A, Gneiting T, Fraley C. 2007. Probabilistic quantitative precipitation forecasting using bayesian model averaging. Monthly Weather Review 135: 32093220.
  • Smirnova TG, Brown JM, Benjamin SG. 1997. Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Monthly Weather Review 125: 18701884.
  • Stephenson DB, Coelho CAS, Jolliffe IT. 2008. Two extra components in the brier score decomposition. Weather and Forecasting 23: 752757.
  • Theis SE, Hense A, Damrath U. 2005. Probabilistic precipitation forecast from a deterministic model: a pragmatic approach. Meteorological Applications 12: 257268.
  • Toth Z, Kalnay E. 1997. Ensemble forecasting at NCEP and the breeding method. Monthly Weather Review 125: 32973319.
  • Wilks DS. 2006. Statistical Methods in the Atmospheric Sciences: An Introduction, International Geophysics Series, Vol. 91. Academic Press: Burlington, USA; 627 pp.
  • Wilks DS, Hamill T. 2007. Comparison of ensemble-MOS methods using GFS reforecasts. Monthly Weather Review 135: 23792390.