Plant-derived polyphenols attenuate lipopolysaccharide-induced nitric oxide and tumour necrosis factor production in murine microglia and macrophages

Authors


Abstract

Lipopolysaccharides released during bacterial infections induce the expression of pro-inflammatory cytokines and lead to complications such as neuronal damage in the CNS and septic shock in the periphery. While the initial infection is treated by antibiotics, anti-inflammatory agents would be advantageous add-on medications. In order to identify such compounds, we have compared 29 commercially available polyphenol-containing plant extracts and pure compounds for their ability to prevent LPS-induced up-regulation of NO production. Among the botanical extracts, bearberry and grape seed were the most active preparations, exhibiting IC50 values of around 20 μg/mL. Among the pure compounds, IC50 values for apigenin, diosmetin and silybin were 15, 19 and 12 μM, in N-11 murine microglia, and 7, 16 and 25 μM, in RAW 264.7 murine macrophages, respectively. In addition, these flavonoids were also able to down-regulate LPS-induced tumour necrosis factor production. Structure-activity relationships of the flavonoids demonstrated three distinct principles: (i) flavonoid-aglycons are more potent than the corresponding glycosides, (ii) flavonoids with a 4′-OH substitution in the B-ring are more potent than those with a 3′-OH-4′-methoxy substitution, (iii) flavonoids of the flavone type (with a C2=C3 double bond) are more potent than those of the flavanone type (with a at C2-C3 single bond).

Ancillary