3 References

  • 1
    Krauss, R. M., Eckel, R. H., Howard, B., Appel, L. J. et al., AHA Dietary Guidelines: revision 2000: a statement for healthcare professionals from the Nutrition Committee of the American Heart Association. Stroke 2000, 31, 27512766.
  • 2
    Lauer, M. S., Fontanarosa, P. B., Updated guidelines for cholesterol management. JAMA 2001, 285, 25082509.
  • 3
    Brown, M. S., Goldstein, J. L., Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu. Rev. Biochem. 1983, 52, 223261.
  • 4
    Baigent, C., Blackwell, L., Emberson, J., Holland, L. E. et al., Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 16701681.
  • 5
    Landmesser, U., Bahlmann, F., Mueller, M., Spiekermann, S. et al., Simvastatin versus ezetimibe: pleiotropic and lipid-lowering effects on endothelial function in humans. Circulation 2005, 111, 23562363.
  • 6
    LaRosa, J. C., Low-density lipoprotein cholesterol reduction: the end is more important than the means. Am. J. Cardiol. 2007, 100, 240242.
  • 7
    Demonty, I., Ras, R. T., van der Knaap, H. C., Duchateau, G. S. et al., Continuous dose-response relationship of the LDL-cholesterol-lowering effect of phytosterol intake. J. Nutr. 2009, 139, 271284.
  • 8
    Musa-Veloso, K., Poon, T. H., Elliot, J. A., Chung, C., A comparison of the LDL-cholesterol lowering efficacy of plant stanols and plant sterols over a continuous dose range: results of a meta-analysis of randomized, placebo-controlled trials. Prostaglandins Leukot Essent. Fatty Acids 2011, 85, 928.
  • 9
    de Jong, A., Plat, J., Lutjohann, D., Mensink, R. P., Effects of long-term plant sterol or stanol ester consumption on lipid and lipoprotein metabolism in subjects on statin treatment. Br. J. Nutr. 2008, 100, 937941.
  • 10
    Devaraj, S., Jialal, I., The role of dietary supplementation with plant sterols and stanols in the prevention of cardiovascular disease. Nutr. Rev. 2006, 64, 348354.
  • 11
    Sudhop, T., Sahin, Y., Lindenthal, B., Hahn, C. et al., Comparison of the hepatic clearances of campesterol, sitosterol, and cholesterol in healthy subjects suggests that efflux transporters controlling intestinal sterol absorption also regulate biliary secretion. Gut 2002, 51, 860863.
  • 12
    Ling, W. H., Jones, P. J., Dietary phytosterols: a review of metabolism, benefits and side effects. Life Sci. 1995, 57, 195206.
  • 13
    Klett, E. L., Lu, K., Kosters, A., Vink, E. et al., A mouse model of sitosterolemia: absence of Abcg8/sterolin-2 results in failure to secrete biliary cholesterol. BMC Med. 2004, 2, 5.
  • 14
    Law, M., Plant sterol and stanol margarines and health. BMJ 2000, 320, 861864.
  • 15
    Katan, M. B., Grundy, S. M., Jones, P., Law, M. et al., Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin. Proc. 2003, 78, 965978.
  • 16
    Abumweis, S. S., Barake, R., Jones, P. J., Plant sterols/stanols as cholesterol lowering agents: a meta-analysis of randomized controlled trials. Food Nutr. Res. 2008, 5269.
  • 17
    Mensink, R. P., de Jong, A., Lutjohann, D., Haenen, G. R. et al., Plant stanols dose-dependently decrease LDL-cholesterol concentrations, but not cholesterol-standardized fat-soluble antioxidant concentrations, at intakes up to 9 g/d. Am. J. Clin. Nutr. 2010, 92, 2433.
  • 18
    Gylling, H., Hallikainen, M., Nissinen, M. J., Simonen, P. et al., Very high plant stanol intake and serum plant stanols and non-cholesterol sterols. Eur. J. Nutr. 2009, 49, 111117.
  • 19
    Plat, J., van Onselen, E. N., van Heugten, M. M., Mensink, R. P., Effects on serum lipids, lipoproteins and fat soluble antioxidant concentrations of consumption frequency of margarines and shortenings enriched with plant stanol esters. Eur. J. Clin. Nutr. 2000, 54, 671677.
  • 20
    Peterson, D. W., Effect of soybean sterols in the diet on plasma and liver cholesterol in chicks. Proc. Soc. Exp. Biol. Med. 1951, 78, 143147.
  • 21
    Peterson, D. W., Nichols, C. W., Jr., Shneour, E. A., Some relationships among dietary sterols, plasma and liver cholesterol levels, and atherosclerosis in chicks. J. Nutr. 1952, 47, 5765.
  • 22
    Pollak, O. J., Successive prevention of experimental hypercholesteremia and cholesterol atherosclerosis in the rabbit. Circulation 1953, 7, 696701.
  • 23
    Pollak, O. J., Reduction of blood cholesterol in man. Circulation 1953, 7, 702706.
  • 24
    Sklan, D., Dahan, M., Budowski, P., Hurwitz, S., Differential absorption of endogenous and exogenous cholesterol in the chick as affected by dietary oil level and phytosterols. J. Nutr. 1977, 107, 19962001.
  • 25
    Sklan, D., Budowski, P., Hurwitz, S., Effect of soy sterols on intestinal absorption and secretion of cholesterol and bile acids in the chick. J. Nutr. 1974, 104, 10861090.
  • 26
    Borgstrom, B., Partition of lipids between emulsified oil and micellar phases of glyceride-bile salt dispersions. J. Lipid. Res. 1967, 8, 598608.
  • 27
    Ikeda, I., Tanabe, Y., Sugano, M., Effects of sitosterol and sitostanol on micellar solubility of cholesterol. J. Nutr. Sci. Vitaminol. (Tokyo) 1989, 35, 361369.
  • 28
    Lees, A. M., Mok, H. Y., Lees, R. S., McCluskey, M. A. et al., Plant sterols as cholesterol-lowering agents: clinical trials in patients with hypercholesterolemia and studies of sterol balance. Atherosclerosis 1977, 28, 325338.
  • 29
    Brown, A. W., Hang, J., Dussault, P. H., Carr, T. P., Phyto-sterol ester constituents affect micellar cholesterol solubility in model bile. Lipids 2010, 45, 855862.
  • 30
    Armstrong, M. J., Carey, M. C., Thermodynamic and molecular determinants of sterol solubilities in bile salt micelles. J. Lipid Res. 1987, 28, 11441155.
  • 31
    Sugano, M., Morioka, H., Ikeda, I., A comparison of hypo-cholesterolemic activity of beta-sitosterol and beta-sitostanol in rats. J. Nutr. 1977, 107, 20112019.
  • 32
    Hassan, A. S., Rampone, A. J., Intestinal absorption and lymphatic transport of cholesterol and beta-sitostanol in the rat. J. Lipid Res. 1979, 20, 646653.
  • 33
    Heinemann, T., Kullak-Ublick, G. A., Pietruck, B., von Bergmann, K., Mechanisms of action of plant sterols on inhibition of cholesterol absorption. Comparison of sitosterol and sitostanol. Eur. J. Clin. Pharmacol. 1991, 40, S59S63.
  • 34
    Weststrate, J. A., Meijer, G. W., Plant sterol-enriched margarines and reduction of plasma total- and LDL-cholesterol concentrations in normocholesterolaemic and mildly hypercholesterolaemic subjects. Eur. J. Clin. Nutr. 1998, 52, 334343.
  • 35
    Matvienko, O. A., Lewis, D. S., Swanson, M., Arndt, B. et al., A single daily dose of soybean phytosterols in ground beef decreases serum total cholesterol and LDL cholesterol in young, mildly hypercholesterolemic men. Am. J. Clin. Nutr. 2002, 76, 5764.
  • 36
    Rudkowska, I., AbuMweis, S. S., Nicolle, C., Jones, P. J., Cholesterol-lowering efficacy of plant sterols in low-fat yogurt consumed as a snack or with a meal. J. Am. Coll. Nutr. 2008, 27, 588595.
  • 37
    Doornbos, A. M., Meynen, E. M., Duchateau, G. S., van der Knaap, H. C. et al., Intake occasion affects the serum cholesterol lowering of a plant sterol-enriched single-dose yoghurt drink in mildly hypercholesterolaemic subjects. Eur. J. Clin. Nutr. 2006, 60, 325333.
  • 38
    Grundy, S. M., Mok, H. Y., Determination of cholesterol absorption in man by intestinal perfusion. J. Lipid Res. 1977, 18, 263271.
  • 39
    Ostlund, R. E., Jr., Spilburg, C. A., Stenson, W. F., Sitostanol administered in lecithin micelles potently reduces cholesterol absorption in humans. Am. J. Clin. Nutr. 1999, 70, 826831.
  • 40
    Mattson, F. H., Grundy, S. M., Crouse, J. R., Optimizing the effect of plant sterols on cholesterol absorption in man. Am. J. Clin. Nutr. 1982, 35, 697700.
  • 41
    Nissinen, M., Gylling, H., Vuoristo, M., Miettinen, T. A., Micellar distribution of cholesterol and phytosterols after duodenal plant stanol ester infusion. Am. J. Physiol. Gastrointest Liver Physiol. 2002, 282, G10091015.
  • 42
    Kobayashi, M., Hamada, T., Goto, H., Imaizumi, K. et al., Comparison of effects of dietary unesterified and esterified plant sterols on cholesterol absorption in rats. J. Nutr. Sci. Vitaminol. (Tokyo) 2008, 54, 210214.
  • 43
    Miettinen, T. A., Vuoristo, M., Nissinen, M., Jarvinen, H. J. et al., Serum, biliary, and fecal cholesterol and plant sterols in colectomized patients before and during consumption of stanol ester margarine. Am. J. Clin. Nutr. 2000, 71, 10951102.
  • 44
    Normen, L., Ellegard, L., Janssen, H. G., Steenbergen, H. et al., Phytosterol and phytostanol esters are effectively hydrolysed in the gut and do not affect fat digestion in ileostomy subjects. Eur. J. Nutr. 2006, 45, 165170.
  • 45
    Carey, M. C., Small, D. M., Bliss, C. M., Lipid digestion and absorption. Annu. Rev. Physiol. 1983, 45, 651677.
  • 46
    Richelle, M., Enslen, M., Hager, C., Groux, M. et al., Both free and esterified plant sterols reduce cholesterol absorption and the bioavailability of beta-carotene and alpha-tocopherol in normocholesterolemic humans. Am. J. Clin. Nutr. 2004, 80, 171177.
  • 47
    Spilburg, C. A., Goldberg, A. C., McGill, J. B., Stenson, W. F. et al., Fat-free foods supplemented with soy stanol-lecithin powder reduce cholesterol absorption and LDL cholesterol. J. Am. Diet Assoc. 2003, 103, 577581.
  • 48
    Soderholm, P. P., Alfthan, G., Koskela, A. H., Adlercreutz, H. et al., The effect of high-fiber rye bread enriched with nonesterified plant sterols on major serum lipids and apolipoproteins in normocholesterolemic individuals. Nutr. Metab. Cardiovasc. Dis. 2010, DOI:10.1016/j.numecd.2010.09.011.
  • 49
    Glover, J., Green, C., Sterol metabolism. 3. The distribution and transport of sterols across the intestinal mucosa of the guinea pig. Biochem. J. 1957, 67, 308316.
  • 50
    Ikeda, I., Tanaka, K., Sugano, M., Vahouny, G. V. et al., Inhibition of cholesterol absorption in rats by plant sterols. J. Lipid Res. 1988, 29, 15731582.
  • 51
    Ikeda, I., Tanaka, K., Sugano, M., Vahouny, G. V. et al., Discrimination between cholesterol and sitosterol for absorption in rats. J. Lipid Res. 1988, 29, 15831591.
  • 52
    Liu, Y., Manchekar, M., Sun, Z., Richardson, P. E. et al., Apolipoprotein B-containing lipoprotein assembly in microsomal triglyceride transfer protein-deficient McA-RH7777 cells. J. Lipid Res. 2010, 51, 22532264.
  • 53
    Kam, N. T., Albright, E., Mathur, S. N., Field, F. J., Inhibition of acylcoenzyme A: cholesterol acyltransferase activity in CaCo-2 cells results in intracellular triglyceride accumulation. J. Lipid Res. 1989, 30, 371377.
  • 54
    Clark, S. B., Tercyak, A. M., Reduced cholesterol transmucosal transport in rats with inhibited mucosal acyl CoA: cholesterol acyltransferase and normal pancreatic function. J. Lipid Res. 1984, 25, 148159.
  • 55
    Field, F. J., Mathur, S. N., Beta-sitosterol: esterification by intestinal acylcoenzyme A: cholesterol acyltransferase (ACAT) and its effect on cholesterol esterification. J. Lipid Res. 1983, 24, 409417.
  • 56
    Field, F. J., Born, E., Mathur, S. N., Effect of micellar beta-sitosterol on cholesterol metabolism in CaCo-2 cells. J. Lipid Res. 1997, 38, 348360.
  • 57
    Chang, C. C., Chen, J., Thomas, M. A., Cheng, D. et al., Regulation and immunolocalization of acyl-coenzyme A: cholesterol acyltransferase in mammalian cells as studied with specific antibodies. J. Biol. Chem. 1995, 270, 2953229540.
  • 58
    Liang, Y. T., Wong, W. T., Guan, L., Tian, X. Y. et al., Effect of phytosterols and their oxidation products on lipoprotein profiles and vascular function in hamster fed a high cholesterol diet. Atherosclerosis 2011, 219, 124133.
  • 59
    Rideout, T. C., Harding, S. V., Jones, P. J., Consumption of plant sterols reduces plasma and hepatic triglycerides and modulates the expression of lipid regulatory genes and de novo lipogenesis in C57BL/6J mice. Mol. Nutr. Food Res. 2010, 54, S7S13.
  • 60
    Davis, H. R., Jr., Zhu, L. J., Hoos, L. M., Tetzloff, G. et al., Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J. Biol. Chem. 2004, 279, 3358633592.
  • 61
    Calpe-Berdiel, L., Escola-Gil, J. C., Julve, J., Zapico-Muniz, E. et al., Differential intestinal mucosal protein expression in hypercholesterolemic mice fed a phytosterol-enriched diet. Proteomics 2007, 7, 26592666.
  • 62
    Smart, E. J., De Rose, R. A., Farber, S. A., Annexin 2-caveolin 1 complex is a target of ezetimibe and regulates intestinal cholesterol transport. Proc. Natl. Acad. Sci. USA 2004, 101, 34503455.
  • 63
    Valasek, M. A., Weng, J., Shaul, P. W., Anderson, R. G. et al., Caveolin-1 is not required for murine intestinal cholesterol transport. J. Biol. Chem. 2005, 280, 2810328109.
  • 64
    Plosch, T., Kruit, J. K., Bloks, V. W., Huijkman, N. C. et al., Reduction of cholesterol absorption by dietary plant sterols and stanols in mice is independent of the Abcg5/8 transporter. J. Nutr. 2006, 136, 21352140.
  • 65
    Schultz, J. R., Tu, H., Luk, A., Repa, J. J. et al., Role of LXRs in control of lipogenesis. Genes. Dev. 2000, 14, 28312838.
  • 66
    Grefhorst, A., Elzinga, B. M., Voshol, P. J., Plosch, T. et al., Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J. Biol. Chem. 2002, 277, 3418234190.
  • 67
    Lo Sasso, G., Murzilli, S., Salvatore, L., D'Errico, I. et al., Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis. Cell. Metab. 2010, 12, 187193.
  • 68
    Yamanashi, Y., Takada, T., Suzuki, H., Niemann-Pick C1-like 1 overexpression facilitates ezetimibe-sensitive cholesterol and beta-sitosterol uptake in CaCo-2 cells. J. Pharmacol. Exp. Ther. 2007, 320, 559564.
  • 69
    Zhang, J. H., Ge, L., Qi, W., Zhang, L. et al., The N-terminal domain of NPC1L1 protein binds cholesterol and plays essential roles in cholesterol uptake. J. Biol. Chem. 2011, 286, 2508825097.
  • 70
    Jakulj, L., Trip, M. D., Sudhop, T., von Bergmann, K. et al., Inhibition of cholesterol absorption by the combination of dietary plant sterols and ezetimibe: effects on plasma lipid levels. J. Lipid Res. 2005, 46, 26922698.
  • 71
    Lin, X., Racette, S. B., Lefevre, M., Ma, L. et al., Combined effects of ezetimibe and phytosterols on cholesterol metabolism: a randomized, controlled feeding study in humans. Circulation 2011, 124, 596601.
  • 72
    Duval, C., Touche, V., Tailleux, A., Fruchart, J. C. et al., Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine. Biochem. Biophys. Res. Commun. 2006, 340, 12591263.
  • 73
    Calpe-Berdiel, L., Escola-Gil, J. C., Blanco-Vaca, F., New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism. Atherosclerosis 2009, 203, 1831.
  • 74
    Dang, H., Liu, Y., Pang, W., Li, C. et al., Suppression of 2,3-oxidosqualene cyclase by high fat diet contributes to liver X receptor-alpha-mediated improvement of hepatic lipid profile. J. Biol. Chem. 2009, 284, 62186226.
  • 75
    Plat, J., Nichols, J. A., Mensink, R. P., Plant sterols and stanols: effects on mixed micellar composition and LXR (target gene) activation. J. Lipid Res. 2005, 46, 24682476.
  • 76
    Plat, J., Brufau, G., Dallinga-Thie, G. M., Dasselaar, M. et al., A plant stanol yogurt drink alone or combined with a low-dose statin lowers serum triacylglycerol and non-HDL cholesterol in metabolic syndrome patients. J. Nutr. 2009, 139, 11431149.
  • 77
    Plat, J., Mensink, R. P., Plant stanol esters lower serum triacylglycerol concentrations via a reduced hepatic VLDL-1 production. Lipids 2009, 44, 11491153.
  • 78
    Theuwissen, E., Plat, J., van der Kallen, C. J., van Greevenbroek, M. M. et al., Plant stanol supplementation decreases serum triacylglycerols in subjects with overt hypertriglyceridemia. Lipids 2009, 44, 11311140.
  • 79
    Calpe-Berdiel, L., Escola-Gil, J. C., Ribas, V., Navarro-Sastre, A. et al., Changes in intestinal and liver global gene expression in response to a phytosterol-enriched diet. Atherosclerosis 2005, 181, 7585.
  • 80
    Plosch, T., van der Veen, J. N., Havinga, R., Huijkman, N. C. et al., Abcg5/Abcg8-independent pathways contribute to hepatobiliary cholesterol secretion in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 291, G414G423.
  • 81
    Kruit, J. K., Plosch, T., Havinga, R., Boverhof, R. et al., Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice. Gastroenterology 2005, 128, 147156.
  • 82
    Temel, R. E., Sawyer, J. K., Yu, L., Lord, C. et al., Biliary sterol secretion is not required for macrophage reverse cholesterol transport. Cell. Metab 2010, 12, 96102.
  • 83
    van der Velde, A. E., Vrins, C. L., van den Oever, K., Kunne, C. et al., Direct intestinal cholesterol secretion contributes significantly to total fecal neutral sterol excretion in mice. Gastroenterology 2007, 133, 967975.
  • 84
    Brown, J. M., Bell, T. A., 3rd, Alger, H. M., Sawyer, J. K. et al., Targeted depletion of hepatic ACAT2-driven cholesterol esterification reveals a non-biliary route for fecal neutral sterol loss. J. Biol. Chem. 2008, 283, 1052210534.
  • 85
    Brufau, G., Kuipers, F., Lin, Y., Trautwein, E. A. et al., A reappraisal of the mechanism by which plant sterols promote neutral sterol loss in mice. PLoS One 2011, 6, e21576.
  • 86
    van der Veen, J. N., van Dijk, T. H., Vrins, C. L., van Meer, H. et al., Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J. Biol. Chem. 2009, 284, 1921119219.
  • 87
    Sehayek, E., Duncan, E. M., Lutjohann, D., Von Bergmann, K. et al., Loci on chromosomes 14 and 2, distinct from ABCG5/ABCG8, regulate plasma plant sterol levels in a C57BL/6J x CASA/Rk intercross. Proc. Natl. Acad. Sci. USA 2002, 99, 1621516219.
  • 88
    Russell, J. C., Ewart, H. S., Kelly, S. E., Kralovec, J. et al., Improvement of vascular dysfunction and blood lipids of insulin-resistant rats by a marine oil-based phytosterol compound. Lipids 2002, 37, 147152.
  • 89
    Vaskonen, T., Mervaala, E., Krogerus, L., Karppanen, H., Supplementation of plant sterols and minerals benefits obese Zucker rats fed an atherogenic diet. J. Nutr. 2002, 132, 231237.
  • 90
    Corretti, M. C., Anderson, T. J., Benjamin, E. J., Celermajer, D. et al., Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J. Am. Coll. Cardiol. 2002, 39, 257265.
  • 91
    Ntanios, F. Y., Jones, P. J., Frohlich, J. J., Dietary sitostanol reduces plaque formation but not lecithin cholesterol acyl transferase activity in rabbits. Atherosclerosis 1998, 138, 101110.
  • 92
    Plat, J., Beugels, I., Gijbels, M. J., de Winther, M. P. et al., Plant sterol or stanol esters retard lesion formation in LDL receptor-deficient mice independent of changes in serum plant sterols. J. Lipid Res. 2006, 47, 27622771.
  • 93
    Volger, O. L., Mensink, R. P., Plat, J., Hornstra, G. et al., Dietary vegetable oil and wood derived plant stanol esters reduce atherosclerotic lesion size and severity in apoE*3-Leiden transgenic mice. Atherosclerosis 2001, 157, 375381.
  • 94
    Weingartner, O., Lutjohann, D., Ji, S., Weisshoff, N. et al., Vascular effects of diet supplementation with plant sterols. J. Am. Coll. Cardiol. 2008, 51, 15531561.
  • 95
    Celermajer, D. S., Sorensen, K. E., Bull, C., Robinson, J. et al., Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J. Am. Coll. Cardiol. 1994, 24, 14681474.
  • 96
    de Jongh, S., Vissers, M. N., Rol, P., Bakker, H. D. et al., Plant sterols lower LDL cholesterol without improving endothelial function in prepubertal children with familial hypercholesterolaemia. J. Inherit. Metab. Dis. 2003, 26, 343351.
  • 97
    Hallikainen, M., Lyyra-Laitinen, T., Laitinen, T., Agren, J. J. et al., Endothelial function in hypercholesterolemic subjects: effects of plant stanol and sterol esters. Atherosclerosis 2006, 188, 425432.
  • 98
    Jakulj, L., Vissers, M. N., Rodenburg, J., Wiegman, A. et al., Plant stanols do not restore endothelial function in pre-pubertal children with familial hypercholesterolemia despite reduction of low-density lipoprotein cholesterol levels. J. Pediatr. 2006, 148, 495500.
  • 99
    Raitakari, O. T., Salo, P., Gylling, H., Miettinen, T. A., Plant stanol ester consumption and arterial elasticity and endothelial function. Br. J. Nutr. 2008, 100, 603608.
  • 100
    De Jong, A., Plat, J., Bast, A., Godschalk, R. W. et al., Effects of plant sterol and stanol ester consumption on lipid metabolism, antioxidant status and markers of oxidative stress, endothelial function and low-grade inflammation in patients on current statin treatment. Eur. J. Clin. Nutr. 2008, 62, 263273.