Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis


Correspondence: Dr. Tzong-Shyuan Lee, Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan


Fax: +886-2-2826-4049



Curcumin, a potent antioxidant extracted from Curcuma longa, confers protection against atherosclerosis, yet the detailed mechanisms are not fully understood. In this study, we examined the effect of curcumin on lipid accumulation and the underlying molecular mechanisms in macrophages and apolipoprotein E-deficient (apoE−/−) mice.

Methods and results

Treatment with curcumin markedly ameliorated oxidized low-density lipoprotein (oxLDL)-induced cholesterol accumulation in macrophages, which was due to decreased oxLDL uptake and increased cholesterol efflux. In addition, curcumin decreased the protein expression of scavenger receptor class A (SR-A) but increased that of ATP-binding cassette transporter (ABC) A1 and had no effect on the protein expression of CD36, class B receptor type I (SR-BI), or ATP-binding cassette transporter G1 (ABCG1). The downregulation of SR-A by curcumin was via ubiquitin–proteasome–calpain-mediated proteolysis. Furthermore, the curcumin-induced upregulation of ABCA1 was mainly through calmodulin-liver X receptor α (LXRα)-dependent transcriptional regulation. Curcumin administration modulated the expression of SR-A, ABCA1, ABCG1, and SR-BI in aortas and retarded atherosclerosis in apoE−/− mice.


Our findings suggest that inhibition of SR-A-mediated oxLDL uptake and promotion of ABCA1-dependent cholesterol efflux are two crucial events in suppression of cholesterol accumulation by curcumin in the transformation of macrophage foam cells.