5 References

  • 1
    Chin, S. F., Liu, W., Storkson, J. M., Ha, Y. L. et al., Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. J. Food Compos. Anal. 1992, 5, 185197.
  • 2
    Cheng, W. L., Lii, C. K., Chen, H. W., Lin, T. H. et al., Contribution of conjugated linoleic acid to the suppression of inflammatory responses through the regulation of the NF-κB pathway. J. Agric. Food Chem. 2004, 52, 7178.
  • 3
    Torres-Duarte, A. P., Vanderhoek, J. Y., Conjugated linoleic acid exhibits stimulatory and inhibitory effects on prostanoid production in human endothelial cells and platelets. Biochim. Biophys. Acta Mol. Cell Res. 2003, 1640, 6976.
  • 4
    McLeod, R. S., LeBlanc, A. M., Langille, M. A., Mitchell, P. L. et al., Conjugated linoleic acids, atherosclerosis, and hepatic very-low-density lipoprotein metabolism. Am. J. Clin. Nutr. 2004, 79, 1169S1174S.
  • 5
    Lee, K. N., Kritchevsky, D., Pariza, M. W., Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis 1994, 108, 1925.
  • 6
    Nicolosi, R. J., Rogers, E. J., Kritchevsky, D., Scimeca, J. A. et al., Dietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atharosclerosis in hypercholasterolemic hamsters. Artery 1997, 22, 266277.
  • 7
    Wilson, T. A., Nicolosi, R. J., Chrysam, M., Kritchevsky, D., Conjugated linoleic acid reduces early aortic atherosclerosis greater than linoleic acid in hypercholesterolemic hamsters. Nutr. Res. 2000, 20, 17951805.
  • 8
    Kritchevsky, D., Tepper, S. A., Wright, S., Tso, P. et al., Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits. J. Am. Coll. Nutr. 2000, 19, 472S477S.
  • 9
    Toomey, S., Roche, H., Fitzgerald, D., Belton, O., Regression of pre-established atherosclerosis in the apoE-/- mouse by conjugated linoleic acid. Biochem. Soc. Trans. 2003, 31, 10751079.
  • 10
    De Roos, B., Rucklidge, G., Reid, M., Ross, K. et al., Divergent mechanisms of cis9, trans11-and trans10, cis12-conjugated linoleic acid affecting insulin resistance and inflammation in apolipoprotein E knockout mice: a proteomics approach. FASEB J. 2005, 19, 17461748.
  • 11
    Valeille, K., Férézou, J., Parquet, M., Amsler, G. et al., The natural concentration of the conjugated linoleic acid, cis-9,trans-11, in milk fat has antiatherogenic effects in hyperlipidemic hamsters. J. Nutr. 2006, 136, 13051310.
  • 12
    Valeille, K., Férézou, J., Amsler, G., Quignard-Boulan, A. et al., A cis-9,trans-11-conjugated linoleic acid-rich oil reduces the outcome of atherogenic process in hyperlipidemic hamster. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H652H659.
  • 13
    Arbonés-Mainar, J. M., Navarro, M. A., Guzmán, M. A., Arnal, C. et al., Selective effect of conjugated linoleic acid isomers on atherosclerotic lesion development in apolipoprotein E knockout mice. Atherosclerosis 2006, 189, 318327.
  • 14
    Toomey, S., Harhen, B., Roche, H. M., Fitzgerald, D. et al., Profound resolution of early atherosclerosis with conjugated linoleic acid. Atherosclerosis 2006, 187, 4049.
  • 15
    Lusis, A. J., Atherosclerosis. Nature 2000, 407, 233241.
  • 16
    Goldschmidt, P. J., Lopes, N., Crawford, L. E., Becker, R. C., in: Michelson, A. D., Coller, B. S. (Eds.), Atherothrombosis and Coronary Artery Disease—Platelets (Second Edition), Academic Press, Burlington 2007, pp. 629655.
  • 17
    Truitt, A., McNeill, G., Vanderhoek, J. Y., Antiplatelet effects of conjugated linoleic acid isomers. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 1999, 1438, 239246.
  • 18
    Al-Madaney, M. M., Kramer, J. K. G., Deng, Z., Vanderhoek, J. Y., Effects of lipid-esterified conjugated linoleic acid isomers on platelet function: evidence for stimulation of platelet phospholipase activity. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2003, 1635, 7582.
  • 19
    Benito, P., Nelson, G. J., Kelley, D. S., Bartolini, G. et al., The effect of conjugated linoleic acid on platelet function, platelet fatty acid composition, and blood coagulation in humans. Lipids 2001, 36, 221227.
  • 20
    Sofi, F., Buccioni, A., Cesari, F., Gori, A. M. et al., Effects of a dairy product (pecorino cheese) naturally rich in cis-9, trans-11 conjugated linoleic acid on lipid, inflammatory and haemorheological variables: a dietary intervention study. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 117124.
  • 21
    García, Á., Watson, S. P., Dwek, R. A., Zitzmann, N., Applying proteomics technology to platelet research. Mass Spectrom. Rev. 2005, 24, 918930.
  • 22
    Shannon, P., Markiel, A., Ozier, O., Baliga, N. S. et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 24982504.
  • 23
    Sluijs, I., Plantinga, Y., de Roos, B., Mennen, L. I. et al., Dietary supplementation with cis-9,trans-11 conjugated linoleic acid and aortic stiffness in overweight and obese adults. Am. J. Clin. Nutr. 2010, 91, 175183.
  • 24
    Di Stasi, D., Bernasconi, R., Marchioli, R., Marfisi, R. M. et al., Early modifications of fatty acid composition in plasma phospholipids, platelets and mononucleates of healthy volunteers after low doses of n-3 polyunsaturated fatty acids. Eur. J. Clin. Pharmacol. 2004, 60, 183190.
  • 25
    De Roos, B., Duthie, S. J., Polley, A. C. J., Mulholland, F. et al., Proteomic methodological recommendations for studies involving human plasma, platelets, and peripheral blood mononuclear cells. J. Proteome Res. 2008, 7, 22802290.
  • 26
    De Roos, B., Duivenvoorden, I., Rucklidge, G., Reid, M. et al., Response of apolipoprotein E*3-Leiden transgenic mice to dietary fatty acids: combining liver proteomics with physiological data. FASEB J. 2005, 19, 813815.
  • 27
    Kanehisa, M., Goto, S., KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 2730.
  • 28
    van Iersel, M. P., Pico, A. R., Kelder, T., Gao, J. et al., The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services. BMC Bioinform. 2010, 11, Article 5.
  • 29
    Storey, J. D., Tibshirani, R., Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 2003, 100, 94409445.
  • 30
    Jain, E., Bairoch, A., Duvaud, S., Phan, I. et al., Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinform. 2009, 10, Article 136.
  • 31
    Diez, D., Wheelock, A. M., Goto, S., Haeggström, J. Z. et al., The use of network analyses for elucidating mechanisms in cardiovascular disease. Mol. Biosyst. 2010, 6, 289304.
  • 32
    Moloney, F., Yeow, T. P., Mullen, A., Nolan, J. J. et al., Conjugated linoleic acid supplementation, insulin sensitivity, and lipoprotein metabolism in patients with type 2 diabetes mellitus. Am. J. Clin. Nutr. 2004, 80, 887895.
  • 33
    Tholstrup, T., Raff, M., Straarup, E. M., Lund, P. et al., An oil mixture with trans-10, cis-12 conjugated linoleic acid increases markers of inflammation and in vivo lipid peroxidation compared with cis-9, trans-11 conjugated linoleic acid in postmenopausal women. J. Nutr. 2008, 138, 14451451.
  • 34
    Burdge, G. C., Derrick, P. R., Russell, J. J., Tricon, S. et al., Incorporation of cis-9, trans-11 or trans-10, cis-12 conjugated linoleic acid into human erythrocytes in vivo. Nutr. Res. 2005, 25, 1319.
  • 35
    Burdge, G. C., Lupoli, B., Russell, J. J., Tricon, S. et al., Incorporation of cis-9,trans-11 or trans-10,cis-12 conjugated linoleic acid into plasma and cellular lipids in healthy men. J. Lipid Res. 2004, 45, 736741.
  • 36
    Ombrello, C., Block, R. C., Morrell, C. N., Our expanding view of platelet functions and its clinical implications. J. Cardiovasc. Transl. Res. 2010, 3, 538546.
  • 37
    Liu, K., Belury, M. A., Conjugated linoleic acid reduces arachidonic acid content and PGE2 synthesis in murine keratinocytes. Cancer Lett. 1998, 127, 1522.
  • 38
    Harris, M. A., Hansen, R. A., Vidsudhiphan, P., Koslo, J. L. et al., Effects of conjugated linoleic acids and docosahexaenoic acid on rat liver and reproductive tissue fatty acids, prostaglandins and matrix metalloproteinase production. Prostaglandins Leukot. Essent. Fatty Acids 2001, 65, 2329.
  • 39
    Stachowska, E., Dolegowska, B., Dziedziejko, V., Rybicka, M. et al., Prostaglandin E2 (PGE2) and thromboxane A2 (TXA2) synthesis is regulated by conjugated linoleic acids (CLA) in human macrophages. J. Physiol. Pharmacol. 2009, 60, 7785.
  • 40
    Reynolds, C. M., Roche, H. M., Conjugated linoleic acid and inflammatory cell signalling. Prostaglandins Leukot. Essent. Fatty Acids. 2010, 82, 199204.
  • 41
    Ringseis, R., Eder, K., Influence of conjugated linoleic acids on functional properties of vascular cells. Br. J. Nutr. 2009, 102, 10991116.
  • 42
    Herrmann, J., Rubin, D., Häsler, R., Helwig, U. et al., Isomer-specific effects of CLA on gene expression in human adipose tissue depending on PPAR2 P12A polymorphism: a double blind, randomized, controlled cross-over study. Lipids Health Dis. 2009, 8, Article 35.
  • 43
    Moraes, L. A., Spyridon, M., Kaiser, W. J., Jones, C. I. et al., Non-genomic effects of PPARγ ligands: inhibition of GPVI-stimulated platelet activation. J. Thromb. Haemost. 2010, 8, 577587.
  • 44
    Bishop-Bailey, D., The platelet as a model system for the acute actions of nuclear receptors. Steroids 2010, 75, 570575.
  • 45
    Pula, G., Schuh, K., Nakayama, K., Nakayama, K. I. et al., PKCδ regulates collagen-induced platelet aggregation through inhibition of VASP-mediated filopodia formation. Blood 2006, 108, 40354044.
  • 46
    Pleines, I., Eckly, A., Elvers, M., Hagedorn, I. et al., Multiple alterations of platelet functions dominated by increased secretion in mice lacking Cdc42 in platelets. Blood 2010, 115, 33643373.
  • 47
    Johnson, J. L., Erickson, J. W., Cerione, R. A., New insights into how the Rho guanine nucleotide dissociation inhibitor regulates the interaction of Cdc42 with membranes. J. Biol. Chem. 2009, 284, 2386023871.
  • 48
    DerMardirossian, C., Bokoch, G. M., GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 2005, 15, 356363.
  • 49
    Nishioka, H., Horiuchi, H., Tabuchi, A., Yoshioka, A. et al., Small GTPase Rho regulates thrombin-induced platelet aggregation. Biochem. Biophys. Res. Commun. 2001, 280, 970975.
  • 50
    Hynes, R. O., Integrins: bidirectional, allosteric signaling machines. Cell 2002, 110, 673687.
  • 51
    Furie, B., Furie, B. C., The molecular basis of blood coagulation. Cell 1988, 53, 505518.
  • 52
    Mullen, A., Moloney, F., Nugent, A. P., Doyle, L. et al., Conjugated linoleic acid supplementation reduces peripheral blood mononuclear cell interleukin-2 production in healthy middle-aged males. J. Nutr. Biochem. 2007, 18, 658666.
  • 53
    Ruggeri, Z. M., Platelets in atherothrombosis. Nat. Med. 2002, 8, 12271234.
  • 54
    Zamir, E., Geiger, B., Molecular complexity and dynamics of cell-matrix adhesions. J. Cell. Sci. 2001, 114, 35833590.
  • 55
    Van der Flier, A., Sonnenberg, A., Structural and functional aspects of filamins. Biochim. Biophys. Acta Mol. Cell Res. 2001, 1538, 99117.
  • 56
    Feng, S., Reséndiz, J. C., Lu, X., Kroll, M. H., Filamin A binding to the cytoplasmic tail of glycoprotein Ibα regulates von Willebrand factor-induced platelet activation. Blood 2003, 102, 21222129.
  • 57
    Knezevic, I., Leisner, T. M., Lam, S. C. T., Direct binding of the platelet integrin α(IIb)β3 (GPIIb-IIIa) to talin: evidence that interaction is mediated through the cytoplasmic domains of both α(IIb) and β3. J. Biol. Chem. 1996, 271, 1641616421.
  • 58
    Critchley, D. R., Cytoskeletal proteins talin and vinculin in integrin-mediated adhesion. Biochem. Soc. Trans. 2004, 32, 831836.
  • 59
    Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. et al., Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med. 2008, 14, 325330.
  • 60
    Watanabe, N., Bodin, L., Pandey, M., Krause, M. et al., Mechanisms and consequences of agonist-induced talin recruitment to platelet integrin αIIbβ3. J. Cell Biol. 2008, 181, 12111222.
  • 61
    Giannone, G., Jiang, G., Sutton, D. H., Critchley, D. R. et al., Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation. J. Cell Biol. 2003, 163, 409419.
  • 62
    Calderwood, D. A., Zent, R., Grant, R., Rees, D. J. G. et al., The talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem. 1999, 274, 2807128074.
  • 63
    Bouaouina, M., Lad, Y., Calderwood, D. A., The N-terminal domains of talin cooperate with the phosphotyrosine binding-like domain to activate β1 and β3 integrins. J. Biol. Chem. 2008, 283, 61186125.
  • 64
    Tadokoro, S., Shattil, S. J., Eto, K., Tai, V. et al., Talin binding to integrin β tails: a final common step in integrin activation. Science 2003, 302, 103106.
  • 65
    Nieswandt, B., Moser, M., Pleines, I., Varga-Szabo, D. et al., Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J. Exp. Med. 2007, 204, 31133118.
  • 66
    Petrich, B. G., Marchese, P., Ruggeri, Z. M., Spiess, S. et al., Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J. Exp. Med. 2007, 204, 31033111.