8 References

  • 1
    Lawley, L., Curtis, L., Davis, J., The Food Safety Hazard Guidebook. Royal Society of Chemistry, RSC Publishing, Cambridge, UK 2008.
  • 2
    Riemann, H. P., Cliver, D. O., Foodborne Infections and Intoxications. Elsevier Academic Press, Amsterdam, NL 2006.
  • 3
    Murphy, P. A., Hendrich, S., Landgren, C., Bryant, C. M., Food mycotoxins: an update. J. Food Sci. 2006, 71, 5165.
  • 4
    Mattsson, J. L., Mixtures in the real world: the importance of plant self-defense toxicants, mycotoxins, and the human diet. Toxicol. Appl. Pharmacol. 2007, 223, 125132.
  • 5
    Van Egmond, H. P., Speijers, G. J. A., in: van der Heijden, K., Younes, M., Fishbein, L., Miller S. (Eds.), International Food Safety Handbook, Marcel Dekker, New York, 1999, pp. 341356.
  • 6
    Bhat, R., Rai, R. V., Karim, A. A., Mycotoxins in food and feed: present status and future concerns. Com. Rev. Food Sci. Food Saf. 2010, 9, 5781.
  • 7
    Gareis, M., Bauer, J., Thiem, J., Plank, G. et al., Cleavage of zearalenone-glycoside, a masked mycotoxin, during digestion in swine. J. Vet. Med. B 1990, 37, 236240.
  • 8
    Berthiller F., Schuhmacher, R., Adam, G., Krska, R., Formation, determination and significance of masked and other conjugated mycotoxins. Anal. Bioanal. Chem. 2009, 395, 12431252.
  • 9
    Coleman, J., Blake-Kalff, M., Davies, E., Detoxification of xenobiotics by plants; chemical modification and vacuolar compartmentation. Trends Plant Sci. 1997, 2, 1441251.
  • 10
    Cole, D. J., Edwards, R., in: Roberts T. (Ed.): Metabolism of Agrochemicals in Plants, Wiley, New York 2000, pp. 107154.
  • 11
    Bowles, D., Lim, E. K., Poppenberger, B., Vaistij, F., Glycosyltransfereases of lipopholic small molecules. Annu. Rev. Plant Biol. 2006, 57, 567597.
  • 12
    Bartholomew, D., Van Dyk, D., Lau, S. M., O'Keefe, D. et al., Alternate energy-dependent pathways for the vacuolar uptake of glucose and glutathione conjugates. Plant Physiol. 2002, 130, 15621572.
  • 13
    Brazier, M., Cole, D. J., Edwards, R., O-glucosyltransferase activities towards phenolic natural products and xenobiotics in wheat and herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides). Phytochemistry 2002, 59, 149156.
  • 14
    Brazier, M., Cole, D. J., Edwards, R., Partial purification and characterization of a 2,4,5-trichlorophenol detoxifying O-glucosylferase from wheat. Phytochemistry 2003, 64, 419424.
  • 15
    Pflugmacher, S., Sandermann, H., Taxonomic distribution of plant glucosyltransferases acting on xenobiotics. Phytochemistry 1998, 49, 507511.
  • 16
    Poppenberger, B., Berthiller, F., Bachmann, H., Lucyshyn, D. et al., Heterologous expression of Arabidopsis UDP-glucosyltransferases in Saccharomyces cerevisiae for production of zearalenone-4-O-glucoside. Appl. Environ. Microbiol. 2006, 72, 44044410.
  • 17
    Jones, P., Messner, B., Nakajima, J. I., Schaffner, A. R., Saito, K., UGT73C6 and UGT78D1 glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J. Biol. Chem. 2003, 278, 4391043918.
  • 18
    Dixon, D. P., Cummins, L., Cole, D. J., Edwards, R., Glutathione-mediated detoxification systems in plants. Curr. Opin. Plant Biol. 1998, 1, 258266.
  • 19
    Cummins, I., Dixon, D. P., Freitag-Pohl, S., Skipsey, M. et al., Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab. Rev. 2011, 43, 266280.
  • 20
    Lyubenova, L., Götz, C., Golan-Goldhirsh, A., Schröder, P., Direct effect of Cd on glutathione S-transferase and Glutathione reductase from Calystegia sepium. Int. J. Phytoremediation 2007, 9, 465473.
  • 21
    Holt, D. C., Lay, V. J., Clarke, E. D., Dinsmore, A. et al., Characterization of the safener-induced glutathione S-transferase isoform II from maize. Planta 1995, 196, 295302.
  • 22
    Hayes, J. D., Judah, D. J., McLellan, L. I., Neal, G. E., Contribution of the glutathione S-transferases to the mechanisms of resistance to aflatoxin B1. Pharmacol. Ther. 1991, 50, 443472.
  • 23
    Foster, P. M. D., Slater, T. F., Patterson, D. S. P., A possible enzymic assay for trichothecene mycotoxins in animal feedstuffs. Biochem. Soc. Trans. 1975, 3, 875878.
  • 24
    Subramanian, V., DNA shuffling to produce nucleic acids for mycotoxin detoxification. U.S. Patent 6.500.639, 2002.
  • 25
    Gardiner, S. A., Boddu, J., Berthiller, F., Hametner, C. et al., Transcriptome analysis of the barley-deoxynivalenol interaction: evidence for a role of glutathione in deoxynivalenol detoxification. Mol. Plant Microbe Interact. 2010, 23, 962976.
  • 26
    He, J., Zhou, T., Young, J. C., Bolland, G. J. et al., Chemical and biological transformations of trichothecene mycotoxins in human and animal food chains: a review. Trends Food Sci. Technol. 2010, 21, 6776.
  • 27
    Zinedine, A., Soriano, J. M., Molto, J. C., Mañes, J., Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem. Toxicol. 2007, 45, 18.
  • 28
    Schröder, P., Scheer, C. E., Diekmann, F., Stampfl, A., How plants cope with foreign compounds. translocation of xenobiotic glutathione conjugates in roots of barley (Hordeum vulgare). Environ. Sci. Pollution Res. 2007, 14, 114122.
  • 29
    Wolf, A. E., Dietz, K. J., Schröder, P., A carboxypeptidase degrades glutathione conjugates in the vacuoles of higher plants. FEBS Lett. 1996, 384, 3134.
  • 30
    Lamoureux, G. L., Rusness, D. G., Schröder, P., 1993, Metabolism of a diphenyl-ether herbicide to a volatile thioanisole and a polar sulfonic acid metabolite in spruce (Picea). Pesticide Biochem. Physiol. 1993, 47, 820.
  • 31
    Lemmens, M., Scholtz, U., Berthiller, F., Dall'Asta, C. et al., The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major QTL for Fusarium head blight resistance in wheat. Mol. Plant Microbe Interact. 2005, 18, 13181324.
  • 32
    Lemmens, M., Fusarium head blight in wheat: breeding for resistance and the consequences for the (masked) mycotoxin content in the grain. Proceedings of 4th International symposium on mycotoxins: challenges and Perspectives, Ghent University Association, Ghent, Belgium, 2011, 7383.
  • 33
    Schweiger, W., Boddu, J., Shin, S., Poppenberger, B. et al., Validation of a candidate deoxynivalenol-inactivating UDP-glucosyltransferase from barley by heterologous expression in yeast. Mol. Plant Microbe. Interact. 2010, 7, 977986.
  • 34
    Boddu, J., Cho, S., Kruger, W. M., Muehlbauer, G. J., Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol. Plant Microbe. Interact. 2006, 19, 407417.
  • 35
    Boddu, J., Cho, S. H., Muehlbauer, G. J., Transcriptome analysis of trichothecene- induced gene expression in barley. Mol. Plant Microbe. Interact. 2007, 20, 13641375.
  • 36
    Sewald, N., Lepschy von Gleissenthall, J., Schuster, M., Müller, G. et al., Structure elucidation of a plant metabolite of 4-desoxynivalenol. Tetrahedron Asymmetry 1992, 3, 953960.
  • 37
    Berthiller, F., Dall'Asta, C., Schuhmacher, R., Lemmens, M. et al., Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2005, 53, 34213425.
  • 38
    Poppenberger, B., Berthiller, F., Lucyshyn, D., Sieberer, T. et al., Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glycosyl transferase from Arabidopsis thaliana. J. Biol. Chem. 2003, 278, 4790547914.
  • 39
    Miller, J., Greenhalgh, R., in: Hedin, P., Menn, J., Hollingworth, R. (Eds.), Biotechnology for Crop protection. Am. Soc. Ser. 1988, 379, pp. 117129.
  • 40
    Boutigny, A.-L., Richard-Forget, F., Barreau, C., Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. Eur. J. Plant Pathol. 2008, 121, 411423.
  • 41
    Karlovsky, P., Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives. Appl. Microbiol. Biotechnol. 2011, 91, 491504.
  • 42
    Sasanya, J. J., Hall, C., Wolf-Hall, C., Analysis of deoxynivalenol, masked deoxynivalenol, and Fusarium graminearum pigment in wheat samples, using liquid chromatography-UV-mass spectrometry. J. Food Prot. 2008, 71, 12051213.
  • 43
    Berthiller, F., Dall'Asta, C., Corradini, R., Marchelli, R. et al., Occurrence of deoxynivalenol and its 3-β-D-glucoside in wheat and maize. Food Addit. Contam. A 2009. 26, 507511.
  • 44
    Desmarchelier, A., Seefelder, W., Survey of deoxynivalenol and deoxynivalenol-3- glucoside in cereal-based products by liquid chromatography electrospray ionization tandem mass spectrometry. W. Mycotox. J. 2011, 4, 2935.
  • 45
    Lancova, K., Hajšlová, J., Poustka, J., Krplova, A. et al., Transfer of Fusarium mycotoxins and ‘masked’ deoxynivalenol (deoxynivalenol-3- glucoside) from field barley through malt to beer. Food Addit. Contam. A 2008, 25, 732744.
  • 46
    Kostelanska, M., Hajšlová, J., Zachariasova, M., Malachova, A. et al., Occurrence of deoxynivalenol and its major conjugate, deoxynivalenol-3-glucoside, in beer and some brewing intermediates. J. Agric. Food Chem. 2009, 57, 31873194.
  • 47
    De Boevre, M., Di Mavungu, J. D., Maene, P., Audenaert, K. et al., Development and validation of an LC-MS/MS method for the simultaneous determination of deoxynivalenol, zearalenone, T-2-toxin and some masked metabolites in different cereals and cereal-derived food. Food Addit. Contam. 2012, 23, 819835.
  • 48
    Vendl, O., Crews, C., MacDonald, S., Krska, R. et al., Occurrence of free and conjugated Fusarium mycotoxins in cereal-based food. Food Addit. Contam. A 2010, 27, 11481152.
  • 49
    Malachova, A., Dzuman, Z., Veprikova, Z., Vaclavikova, M. et al., Deoxynivalenol, deoxynivalenol-3-glucoside, and enniatins: the major mycotoxins found in cereal-based products on the Czech market. J. Agric. Food Chem. 2011, 59, 1299012997.
  • 50
    Li, F.-A., Yu, C.-C., Shao, B., Wang, W., Yu, H.-X., Natural occurrence of masked deoxynivalenol and multi-mycotoxins in cereals from China harvested in 2007 and 2008. Chin. J. Prev. Med. 2011, 45, 5763.
  • 51
    Zachariasova, M., Cajka, T., Godula, M., Kostelanska, M. et al., The benefits of Orbitrap high resolution mass spectrometry for free and masked mycotoxins in malt and beer. Fourth International Symposium on Recent Advances in Food Analysis, ICT Prague, CZ, November 4th–6th, 2009.
  • 52
    Zhou, B., He, G. Q., Schwarz, P. B., Occurrence of bound deoxynivalenol in Fusarium head blight-infected barley (Hordeum vulgare L.) and malt as determined by solvo-lysis with trifluoroacetic acid. J. Food Prot. 2008, 71, 12661269.
  • 53
    Tran, S. T., Smith, T. K., Determination of optimal conditions for hydrolysis of conjugated deoxynivalenol in corn and wheat with trifluoromethanesulfonic acid. Ani. Feed Sci. Technol. 2011, 163, 8492.
  • 54
    Tran, S. T., Smith, T. K., Girgis, G. N., A survey of free and conjugated deoxynivalenol in the 2008 corn crop in Ontario, Canada. J. Sci. Food Agric. 2011, 92, 3741.
  • 55
    Nakagawa, H., Ohmichi, K., Sakamoto, S., Sago, Y. et al., Detection of a new Fusarium masked mycotoxin in wheat grain by high-resolution LC-Orbitrap MS. Food Addit. Contam. A 2011, 28, 14471456.
  • 56
    Busman, M., Poling, S. M., Maragos, C. M., Observation of T-2 Toxin and HT-2 Toxin glucosides from Fusarium sporotrichioides by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Toxins 2011, 3, 15541568.
  • 57
    Jarvis, B. B., Mokhtarirejali, N., Schenkel, E. P., Barros, C. S. et al., Trichothecene mycotoxins from Brazilian Baccharis species. Phytochemistry 1991, 30, 789797.
  • 58
    Rosso, L., Maier, M. S., Bertoni, M. D., Trichothecenes production by the Hypocrealean epibiont of Baccharis coridifolia. Plant Biol. 2000, 2, 684686.
  • 59
    Chakrabarti, D. K., Ghosal, S., Occurrence of free and conjugated 12,13- epoxytrichothecenes and zearalenone in banana fruits infected with Fusarium moniliforme. Appl. Environ. Microbiol. 1986, 51, 217219.
  • 60
    Mirocha, C. J., Abbas, H. K., Vesonder, R. F., Absence of trichothecenes in toxigenic isolates of Fusarium moniliforme. Appl. Environ. Microbiol. 1990, 56, 520525.
  • 61
    Ghosal, S., Chakrabarti, D. K., Srivastava, A. K., Srivastava, R. S., Toxic 12,13- epoxytrichothecenes from anise fruits infected with Trichothecium roseum. J. Agric. Food Chem. 1982, 30, 106109.
  • 62
    Engelhardt, G., Zill, G., Wohner, B., Wallnoefer, P. R., Transformation of the Fusarium mycotoxin zearalenone in maize cell suspension cultures. Naturwissenschaften 1988, 75, 309310.
  • 63
    Berthiller, F., Werner, U., Sulyok, M., Krska, R. et al., Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plant Arabidopsis thaliana. Food Addit. Contam. 2006, 23, 11941200.
  • 64
    Schneweis, I., Meyer, K., Engelhardt, G., Bauer, J., Occurrence of zearalenone-4- beta-D-glucopyranoside in wheat. J. Agric. Food Chem. 2002, 50, 17361738.
  • 65
    Kim, E. K., Scott, P. M., Lau, B. P., Hidden fumonisin in corn flakes. Food Addit. Contam. 2003, 20, 161169.
  • 66
    Park, J. W., Scott, P. M., Lau, B. P., Lewis, D. A., Analysis of heat processed corn foods for fumonisins and bound fumonisins. Food Addit. Contam. 2004, 21, 11681178.
  • 67
    Dall'Asta, C., Galaverna, G., Aureli, G., Dossena, A. et al., A LC-MS/MS method for the simultaneous quantification of free and masked fumonisins in maize and maize-based products. W. Mycotox. J. 2008, 1, 237246.
  • 68
    Dall'Asta, C., Galaverna, G., Mangia, M., Sforza, S. et al., Free and bound fumonisins in gluten-free food products. Mol. Nutr. Food Res. 2009, 53, 492499.
  • 69
    Dall'Asta, C., Mangia, M., Berthiller, F., Molinelli, A. et al., Difficulties in fumonisin determination: the issue of hidden fumonisins. Anal. Bioanal. Chem. 2009, 395, 13351345.
  • 70
    Shier, W. T., Abbas, H. K., Badria, F. A., Structure-activity relationships of the corn fungal toxin fumonisin B1: implications for food safety. J. Nat. Tox. 1997, 6, 225242.
  • 71
    Shier, W. T., Abbas, H. K., Current issues in research on fumonisins, mycotoxins which may cause nephropathy. J. Toxicol. 1999, 18, 323335.
  • 72
    Resch, P., Shier, W. T., The fate of fumonisin during thermal food processing. Lebensmittelchemie 2000, 54, 3144.
  • 73
    Shier, W. T., The fumonisin paradox: a review of research on oral bioavailability of fumonisin B1, a mycotoxin produced by Fusarium moniliforme. J. Toxicol. 2000, 19, 161187.
  • 74
    Seefelder, W., Knecht, A., Humpf, H.-U., Bound fumonisin B1: analysis of fumonisin-B1 glyco and amino acid conjugates by liquid chromatography-electrospray ionization-tandem mass spectrometry. J. Agric. Food Chem. 2003, 51, 55675573.
  • 75
    Humpf, H.-U., Voss, K. A., Effects of food processing on the chemical structure and toxicity of fumonisin mycotoxins. Mol. Nutr. Food Res. 2004, 48, 255269.
  • 76
    Kim, E. K., Scott, P. M., Lau, B. P., Lewis, D. A., Extraction of fumonisins B1 and B2 from white rice flour and their stability in white rice flour, cornstarch, cornmeal, and glucose. J. Agric. Food Chem. 2002, 50, 36143620.
  • 77
    Dall'Asta, C., Falavigna, C., Galaverna, G., Dossena, A., Marchelli, R., In vitro digestion assay for determination of hidden fumonisins in maize. J. Agric. Food Chem. 2010, 58, 1204212047.
  • 78
    Motta, E. L., Scott, P. M., Effect of in vitro digestion on fumonisin B1 in corn flakes. Mycotox. Res. 2007, 23, 166172.
  • 79
    Motta, E. L., Scott, P. M., Bioaccessibility of total bound fumonisin from corn flakes. Mycotox. Res. 2009, 25, 229232.
  • 80
    Bartók, T., Tölgyesi, L., Mesterházy, Á., Bartók, M., Szécsi, Á., Identification of the first fumonisin mycotoxins with three acyl groups by ESI-ITMS and ESI-TOFMS following RP HPLC separation: palmitoyl, linoleoyl and oleoyl EFB1 fumonisin isomers from a solid culture of Fusarium verticillioides. Food Addit. Contam. A 2010, 27, 17141723.
  • 81
    Dall'Asta, C., Falavigna, C., Galaverna, G., Battilani, P., Role of maize hybrids and their chemical composition in Fusarium infection and Fumonisin production. J. Agric. Food Chem. 2012, 60, 38003808.
  • 82
    Ruhland, M., Engelhardt, G., Schaefer, W., Wallnoefer, P. R., Transformation of the mycotoxin ochratoxin A in plants: 1. Isolation and identification of metabolites formed in cell suspension cultures of wheat and maize. Nat. Tox. 1996, 4, 254260.
  • 83
    Ruhland, M., Engelhardt, G., Wallnoefer, P. R., Transformation of the mycotoxin ochratoxin A in plants. 2. Time course and rates of degradation and metabolite production in cell-suspension cultures of different crop plants. Mycopathol. 1996, 134, 97102.
  • 84
    Ruhland, M., Engelhardt, G., Wallnoefer, P. R., Transformation of the mycotoxin ochratoxin A in artificially contaminated vegetables and cereals. Mycotox. Res. 1997, 13, 5460.
  • 85
    Baert, K., De Meulenaer, B., Kasase, C., Huyghebaert, A. et al., Free and bound patulin in cloudy apple juice. Food Chem. 2007, 100, 12781282.
  • 86
    Bissessur, J., Permaul, K., Odhav, B., Reduction of patulin during apple juice clarification. J. Food Prot. 2001, 64, 12161219.
  • 87
    Fliege, R., Metzler, M., Electrophilic properties of patulin. N-acetylcysteine and glutathione adducts. Chem. Res. Toxicol. 2000, 13, 373381.
  • 88
    Pedras, M. S. C., Zaharia, L. I., Ward, D. E., The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 2002, 59, 579596.
  • 89
    Porter, J. K., Bacon, C. W., Wray, E. M., Hagler, W.M. et al., Fusaric acid in Fusarium moniliforme cultures, corn, and feeds toxic to livestock and the neurochemical effects in the brain and pineal gland of rats. Natural Toxins 1995, 3, 91100.
  • 90
    Wang, N. G., Ng, T. B., Pharmacological activities of fusaric acid (5-butylpicolinic acid). Life Sci. 1999, 65, 849856.
  • 91
    Karlovsky, P., biological detoxification of fungal toxins and its use in plant breeding, feed and food production. Nat. Toxins 1999, 7, 123.
  • 92
    Ruprich, J., Ostry, V., Immunochemical methods in health risk assessment: cross-reactivity of antibodies against mycotoxin deoxynivalenol with deoxynivalenol-3-glucoside. Cent. Eur. J. Pub. Health 2008, 16, 3437.
  • 93
    Hoogenboom, R., Bovee, T., Traag, W., Hoogerbrugge, R. et al., The use of the DR CALUX bioassay and indicator polychlorinated biphenyls for screening of elevated levels of dioxins and dioxin-like polychlorinated biphenyls in eel. Mol. Nutr. Food Res. 2006, 50, 945957.
  • 94
    Bowens, P., Lancova, K., Dip, R., Povilaityte, V. et al., A new PCR-based bioassay strategy for the detection of type A trichothecenes in food. Analyst 2009, 134, 939944.
  • 95
    Royal Society of Chemistry, RSC Food Analysis Monographs – Extraction of Organic Analytes from Foods – A Manual of Methods, RSC publishing, Cambridge, UK 2005.
  • 96
    Kos, G., Lohninger, H., Krska, R., Fourier transform mid-infrared spectroscopy with attenuated total reflection (FT-IR/ATR) as a tool for the detection of Fusarium fungi on maize. Vib. Spectrosc. 2002, 29, 115119.
  • 97
    Sewram, V., Shephard, G. S., Marasas, W. F. O., Penteado, M., de Castro, M. F., Improving extraction of Fumonisin mycotoxins from Brazilian corn-based infant foods. J. Food Prot. 2003, 66, 854859.
  • 98
    Bretz, M., Beyer, B., Cramer, B., Knecht, A., Humpf, H.-U., Thermal degradation of Fusarium mycotoxin deoxynivalenol. J. Agric. Food Chem. 2006, 54, 64456451.
  • 99
    Kempf, M., Beuerle, T., Bühringer, M., Denner, M. et al., 2008, Pyrrolizidine alkaloids in honey: risk analysis by gas chromatography-mass spectrometry. Mol. Nutr. Food Res. 2008, 52, 11931200.
  • 100
    Sulyok, M., Berthiller, F., Krska, R., Schumacher, R., Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rap. Commun. Mass Spectrom. 2006, 20, 26492659.
  • 101
    Vendl, O., Berthiller, F., Crews, C., Krska, R., Simultaneous determination of deoxynivalenol, zearalenone, and their major masked metabolites in cereal-based food by LC-MS/MS. Anal. Bioanal. Chem. 2009, 395, 13471354.
  • 102
    Meister, U., Investigations on the change of fumonisin content of maize during hydrothermal treatment of maize. Analysis by means of HPLC methods and ELISA. Eur. Food Res. Technol. 2001, 213, 187193.
  • 103
    Zhou, B., Schwarz, P., He, G. Q., Gillespie, J. et al., Effect of enzyme pretreatments on the determination of deoxynivalenol in barley. J. Am. Soc. Brewing Chem. 2008, 66, 103108.
  • 104
    Liu, Y., Walker, F., Hoeglinger, B., Buchenauer, H., Solvolysis procedures for the determination of bound residues of the mycotoxin deoxynivalenol in Fusarium species infected grain of two winter wheat cultivars preinfected with barley yellow dwarf virus. J. Agric. Food Chem. 2005, 53, 68646869.
  • 105
    Lin, L., Zhang, J., Wang, P., Wang, Y., Chen, J., Thin-layer chromatography of mycotoxins and comparison with other chromatographic methods. J. Chromatogr. A 1998, 815, 320.
  • 106
    Krska, R., Baumgartner, S., Josephs, R., The state-of-the-art in the analysis of type-A and -B trichothecene mycotoxins in cereals. Fresenius J. Anal. Chem. 2001, 371, 285299.
  • 107
    Krska, R., Josephs, R., The state-of-the-art in the analysis of estrogenic mycotoxins in cereals. Fresenius J. Anal. Chem. 2001, 369, 469476.
  • 108
    Turner, N. W., Subrahmanyam, S., Piletsky, S. A., Analytical methods for determination of mycotoxins: a review. Anal. Chim. Acta 2009, 632,168180.
  • 109
    Jackson, M. A., Bennett, G. A., Production of fumonisin B1 by Fusarium moniliforme NRRL 13616 in submerged culture. Appl. Environ. Microbiol. 1990, 56, 22962298.
  • 110
    Sano, A., Matsutani, S., High-performance liquid chromatographic method for determining trichothecene mycotoxins by post-column fluorescence derivatization. J. Chromatogr. 1987, 410, 427436.
  • 111
    Cirlini, M., Dall'Asta, C., Galaverna, G., Hyphenated chromatographic techniques for structural characterization and determination of masked mycotoxins. J. Chromatogr. A 2012, 1255, 145152.
  • 112
    Shephard, G. S., Berthiller, F., Burdaspal, P., Crews, C. et al., Developments in mycotoxin analysis: an update for 2009–2010. W. Mycotox. J. 2011, 4, 328.
  • 113
    Goryacheva, I. Y., De Saeger, S., in: De Saeger, S. (Ed.), Determining Mycotoxins and Mycotoxigenic Fungi in Food and Feed. Woodhead Publishing Limited, Cambridge 2011, pp. 135167.
  • 114
    Köppen, R., Koch, M., Siegel, D., Merkel, S. et al., Determination of mycotoxins in foods: current state of analytical methods and limitations. Appl. Microbiol. Biotechnol. 2010, 86, 15951612.
  • 115
    Lupo, A., Roebuck, C., Settimo, K., Quain, A. et al., Validation study of a rapid ELISA for detection of deoxynivalenol in wheat, barley, malted barley, corn, oats, and rice. J. AOAC Int. 2010, 93, 600610.
  • 116
    Maragos, C. M., McCormick, S. P., Monoclonal antibodies for the mycotoxins deoxynivalenol and 3-acetyl-deoxynivalenol. Food Agric. Immunol. 2000, 12, 181192.
  • 117
    Burmistrova, N. A., Goryacheva, I. Y., Basova, E. Y., Franki, A.-S. et al., Application of a new anti-zearalenone monoclonal antibody in different immunoassay formats. Anal. Bioanal. Chem. 2009, 395, 13011307.
  • 118
    Visconti, A., De Girolamo, A., Fitness for purpose – ochratoxin A analytical developments. Food Addit. Contam. 2005, 22, Suppl. 1, 3744.
  • 119
    Barna-Vetro, I., Szabo, E., Fazekas, B., Solti, L., Development of a sensitive ELISA for the determination of fumonisin B1 in cereals. J. Agric. Food Chem. 2000, 48, 28212825.
  • 120
    Baumgartner, S., Führer, M., Krska, R., Comparison of monoclonal antibody performance characteristics for the detection of two representatives of A- and B-trichothecenes: T-2 toxin and deoxynivalenol. W. Mycotox. J. 2010, 3, 233238.
  • 121
    Li, P., Zhang, Q., Zhang, W., Zhang, J. et al., Development of a class-specific monoclonal antibody-based ELISA for aflatoxins in peanut. Food Chem. 2009, 115, 313317.
  • 122
    Goryacheva, I. Y., Karagusheva, M. A., Van Peteghem, C., Sibanda, L. et al., Gel-based immunoassay for non-instrumental screening of aflatoxin M1 in milk. Food Control 2009, 20, 802806.
  • 123
    Kadota, T., Takezawa, Y., Hirano, S., Tajima, O. et al., Rapid detection of nivalenol and deoxynivalenol in wheat using surface plasmon resonance immunoassay. Anal. Chim. Acta 2010, 673, 173178.
  • 124
    Tangni, E. K., Motte, J. C., Callebaut, A., Pussemier, L., Cross-reactivity of antibodies in some commercial deoxynivalenol test kits against some fusariotoxins. J. Agric. Food Chem. 2010, 58, 1262512633.
  • 125
    Veršilovskis, A., Huybrecht, B., Tangni, E. K., Pussemier, L. et al., Crossreactivity of some commercially available deoxynivalenol (DON) and zearalenone (ZEN) immunoaffinity columns to DON- and ZEN-conjugated forms and metabolites. Food Addit. Contam. A 2011, 28, 16871693.
  • 126
    Zachariasova, M., Hajšlová, J., Kostelanska, M., Poustka, J. et al., Deoxynivalenol and its conjugates in beer: a critical assessment of data obtained by enzyme-linked immunosorbent assay and liquid chromatography coupled to tandem mass spectrometry. Anal. Chim. Acta 2008, 625, 7786.
  • 127
    Kolosova, A. Y., Sibanda, L., Dumoulin, F., Lewis, J. et al., Lateral-flow colloidal gold-based immunoassay for the rapid detection of deoxynivalenol with two indicator ranges. Anal. Chim. Acta 2008, 616, 235244.
  • 128
    Grabley, S., Gareis, M., Bockers, W., Thiem, J., Glycosylation of mycotoxins. Synthesis 1992, 11, 10781080.
  • 129
    Berthiller, F., Hametner, C., Krenn, P., Schweiger, W. et al., Preparation and characterization of the conjugated Fusarium mycotoxins zearalenone-4O-beta-D-glucopyranoside, alpha-zearalenol-4O-beta-D-glucopyranoside and beta-zearalenol-4O-beta-D-glucopyranoside by MS/MS and two-dimensional NMR. Food Addit. Contam. A 2009, 26, 207213.
  • 130
    JECFA, in: Joint FAO/WHO Expert Committeee on Food Additives (Ed.), Safety Evaluation of Certain Food Additives and Contaminants, WHO/FAO Food Additives Series 44, WHO, Geneva 2000.
  • 131
    Berthiller, F., Krska, R., Domig, K. J., Kneifel, W. et al., Hydrolytic fate of deoxynivalenol-3-glucoside during digestion. Toxicol. Lett. 2011, 206, 264267.
  • 132
    Berthiller, F., Adam, G., Schuhmacher, R., Krska, R., in: Häubl, G., Berthiller, F., Hörmann, R. (Eds.), Book of Abstracts: Worldwide Mycotoxin Reduction in Food and Feed Chains, ISM Conference, BOKU, Vienna, Austria 2009, pp. 82.
  • 133
    Chatterlee, K., Pavlovsky, R. J., Treeful, L., Mirocha, C. J., Metabolism of different trichothecenes in mammals. J. Food Saf. 2007, 8, 2534.
  • 134
    Pestka, J. J., Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. W. Mycotox. J. 2010, 3, 323347.
  • 135
    JECFA, in: Joint FAO/WHO Expert Committeee on Food Additives (Ed.), Safety Evaluation of Certain Food Additives and Contaminants. WHO/FAO Food additives Series, 47, WHO, Geneva 2001.
  • 136
    Enongene, E. N., Sharma, R. P., Voss, K. A., Riley, R. T., Subcutaneous fumonisin sphingolipid metabolism in mouse digestive epithelium, liver and kidney. Food Chem. Toxicol. 2000, 38, 793799.
  • 137
    JECFA, in: Joint FAO/WHO Expert Committeee on Food Additives (Ed.), Safety Evaluation of Certain Food Additives and Contaminants. WHO/FAO Food additives Series, 47, WHO, Geneva 2001, pp. 281415.
  • 138
    Ringot, D., Changa, A., Schneider, V. C., Larondelle, Y., Toxicokinetics and toxicodynamics of ochratoxin A: an update. Chem. Biol. Interact. 2006, 159, 1846.
  • 139
    Hagelberg, S., Hult, K., Fuchs, R., Toxicokinetics of ochratoxin A in several species and its plasma-binding properties. J. Appl. Toxicol. 1989, 9, 9196.
  • 140
    Stanbury, P. F., Whitaker, A., Hall, S. J., Principles of Fermentation Technology, 2nd Edition, Butterworth-Heinemann, Oxford, UK 1999.
  • 141
    Wiebe, M. G., Myco-protein from Fusarium venenatum: a well-established product for human consumption. Appl. Microbiol. Biotechnol. 2002, 58, 421427.
  • 142
    Hui, Y. H., in: Francis, F.-J. (Ed.), Encyclopedia of Food Science and Technology, 2nd Edition, Wiley, Hoboken, NJ, USA 1999.
  • 143
    Kostelanska, M., Dzuman, Z., Malachova, A., Capouchova, I. et al., Effects of milling and baking technologies on levels of deoxynivalenol and its masked form deoxynivalenol-3-glucoside. J. Agric. Food Chem. 2011, 59, 93039312.
  • 144
    Simsek, S., Burgess, K., Whitney, K. L., Gu, Y., Qian, S. Y., Analysis of deoxynivalenol and deoxynivalenol-3-glucoside in wheat. Food Control 2012, 26, 287292.
  • 145
    Belitz, H.-D., Grosch, W., Schieberle, P., Lehrbuch der Lebensmittelchemie, 6th Edition, Springer-Verlag, Berlin Heidelberg 2008.
  • 146
    Young, J., Fulcher, R., Hayhoe, J., Scott, P. M., Dexter, J., Effect of milling and baking on deoxynivalenol (vomitoxin) content of eastern Canadian wheats. J. Agric. Food Chem. 1984, 32, 659664.
  • 147
    Bigelis, R., in: Nagodawithana, T., Reed, G. (Eds.), Enzymes in Food Processing, 3rd Edition, Academic Press Inc., San Diego, CA 1993.
  • 148
    Hebeda, R.-E., in: Nagodawithana, T., Reed, G. (Eds.), Enzymes in Food Processing, 3rd Edition, Academic Press Inc., San Diego, CA 1993.
  • 149
    Law, B. A., in: Whitehurst, R.-J., Law, B.-A. (Eds.), Enzymes in Food Technology, Sheffield Academic Press Ltd, Sheffield, UK 2002.
  • 150
    Mounjouenpou, P., Gueule, D., Fontana-Tachon, A., Guyot, B. et al., Filamentous fungi producing ochratoxin a during cocoa processing in Cameroon. Int. J. Food Microbiol. 2008, 121, 234241.
  • 151
    Suarez-Quiroz, M., Gonzalez-Rios, O., Barel, M., Guyot, B. et al., Study of ochratoxin A-producing strains in coffee processing. Int. J. Food Sci. Tech. 2004, 39, 501507.
  • 152
    Abrunhosa, L., Paterson, R. R. M., Venâncio, A., Biodegradation of ochratoxin a for food and feed decontamination. Toxins 2010, 2, 10781099.
  • 153
    European Commission, European Union Register of Feed Additives pursuant to Regulation (EC) No 1831/2003, Appendixes 3b & 4: List of additives (released 26 October 2011)
  • 154
    JECFA, in: Joint FAO/WHO Expert Committeee on Food Additives (Ed.), WHO Technical Report Series 2011, 959
  • 155
    Codex Alimenatrius Commission, Report of the Fifth Session of the Codex Committee on Contaminants in Foods, The Hague, The Netherlands 2011. Available from
  • 156
    Codex Alimenatrius Commission, Agenda Item on Proposed draft maximum levels for deoxynivalenol and its acetylated derivatives in cereals and cereal-based products. 2011, Document identifier CX/CF 11/5/6.
  • 157
    EFSA Panel on Contaminants in the Food Chain (CONTAM), Scientific opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA J. 2011, 9, 2407. DOI: 10.2903/j.efsa.2011.2407
  • 158
    European Commission, Regulation (EC) No 178/2002 of the European parliament and of the council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Off. J. Eur. Union, L 31, p. 124.
  • 159
    European Commission, Regulation (EC) No 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off. J. Eur. Union, L 70, p. 1234.