6 References

  • 1
    Grobbee, D. E., Bots, M. L., Atherosclerotic disease regression with statins: studies using vascular markers. Int. J. Cardiol. 2004, 96, 447459.
  • 2
    Glass, C. K., Witztum, J. L., Atherosclerosis. the road ahead. Cell 2001, 104, 503516.
  • 3
    Castelli, W. P., Epidemiology of coronary heart disease: the Framingham study. Am. J. Med. 1984, 76, 412.
  • 4
    Khera, A. V., Cuchel, M., de la Llera-Moya, M., Rodrigues, A. et al., Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Eng. J. Med. 2011, 364, 127135.
  • 5
    Campos, H., Blijlevens, E., McNamara, J. R., Ordovas, J. M. et al., LDL particle size distribution. Results from the Framingham Offspring Study. Arterioscler. Thromb. 1992, 12, 14101419.
  • 6
    Berneis, K. K., Krauss, R. M., Metabolic origins and clinical significance of LDL heterogeneity. J. Lipid Res. 2002, 43, 13631379.
  • 7
    Griendling, K. K., Alexander, R. W., Oxidative stress and cardiovascular disease. Circulation 1997, 96, 32643265.
  • 8
    Navab, M., Berliner, J. A., Watson, A. D., Hama, S. Y. et al., The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler. Thromb. Vasc. Biol. 1996, 16, 831842.
  • 9
    Steinberg, D., Low density lipoprotein oxidation and its pathobiological significance. J. Biol. Chem. 1997, 272, 2096320966.
  • 10
    Miller, G. J., Miller, N. E., Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet 1975, 1, 1619.
  • 11
    Rader, D. J., Regulation of reverse cholesterol transport and clinical implications. Am. J. Cardiol. 2003, 92, 42J49J.
  • 12
    Navab, M., Imes, S. S., Hama, S. Y., Hough, G. P. et al., Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J. Clin. Invest. 1991, 88, 20392046.
  • 13
    Van Lenten, B. J., Hama, S. Y., de Beer, F. C., Stafforini, D. M. et al., Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J. Clin. Invest. 1995, 96, 27582767.
  • 14
    Morgantini, C., Natali, A., Boldrini, B., Imaizumi, S. et al., Anti-inflammatory and antioxidant properties of HDLs are impaired in type 2 diabetes. Diabetes 2011, 60, 26172623.
  • 15
    Kwak, B. R., Mulhaupt, F., Mach, F., Atherosclerosis: anti-inflammatory and immunomodulatory activities of statins. Autoimmun. Rev. 2003, 2, 332338.
  • 16
    Libby, P., Changing concepts of atherogenesis. J. Intern. Med. 2000, 247, 349358.
  • 17
    Glasser, S. P., Selwyn, A. P., Ganz, P., Atherosclerosis: risk factors and the vascular endothelium. Am. Heart J. 1996, 131, 379384.
  • 18
    Rutter, M. K., Meigs, J. B., Sullivan, L. M., D'Agostino, R. B., Sr., Wilson, P. W., Insulin resistance, the metabolic syndrome, and incident cardiovascular events in the Framingham Offspring Study. Diabetes 2005, 54, 32523257.
  • 19
    Kannel, W. B., McGee, D. L., Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes Care 1979, 2, 120126.
  • 20
    Goodson, N., Coronary artery disease and rheumatoid arthritis. Curr. Opin. Rheumatol. 2002, 14, 115120.
  • 21
    Libby, P., Inflammation in atherosclerosis. Nature 2002, 420, 868874.
  • 22
    Koenig, W., Predicting risk and treatment benefit in atherosclerosis: the role of C-reactive protein. Int. J. Cardiol. 2005, 98, 199206.
  • 23
    Hudgins, L. C., Parker, T. S., Levine, D. M., Gordon, B. R. et al., A single intravenous dose of endotoxin rapidly alters serum lipoproteins and lipid transfer proteins in normal volunteers. J. Lip. Res. 2003, 44, 14891498.
  • 24
    McGillicuddy, F. C., de la Llera Moya, M., Hinkle, C. C., Joshi, M. R. et al., Inflammation impairs reverse cholesterol transport in vivo. Circulation 2009, 119, 11351145.
  • 25
    Musunuru, K., Atherogenic dyslipidemia: cardiovascular risk and dietary intervention. Lipids 2010, 45, 907914.
  • 26
    Siri-Tarino, P. W., Sun, Q., Hu, F. B., Krauss, R. M., Saturated fat, carbohydrate, and cardiovascular disease. Am. J. Clin. Nutr. 2010, 91, 502509.
  • 27
    Mensink, R. P., Katan, M. B., Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler. Thromb. 1992, 12, 911919.
  • 28
    Glatz, J. F., Katan, M. B., Dietary saturated fatty acids increase cholesterol synthesis and fecal steroid excretion in healthy men and women. Eur. J. Clin. Invest. 1993, 23, 648655.
  • 29
    Vallim, T., Salter, A. M., Regulation of hepatic gene expression by saturated fatty acids. Prostag. Leukot. Ess. Fatty Acids 2010, 82, 211218.
  • 30
    Siri-Tarino, P. W., Sun, Q., Hu, F. B., Krauss, R. M., Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am. J. Clin. Nutr. 2010, 91, 535546.
  • 31
    Krauss, R. M., Dreon, D. M., Low-density-lipoprotein subclasses and response to a low-fat diet in healthy men. Am. J. Clin. Nutr. 1995, 62, 478S487S.
  • 32
    Howard, B. V., Van Horn, L., Hsia, J., Manson, J. E. et al., Low-fat dietary pattern and risk of cardiovascular disease: the Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 2006, 295, 655666.
  • 33
    Kastorini, C. M., Milionis, H. J., Esposito, K., Giugliano, D. et al., The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J. Am. Coll. Cardiol. 2011, 57, 12991313.
  • 34
    Laaksonen, D. E., Lakka, T. A., Lakka, H. M., Nyyssonen, K. et al., Serum fatty acid composition predicts development of impaired fasting glycaemia and diabetes in middle-aged men. Diabet. Med. 2002, 19, 456464.
  • 35
    Warensjo, E., Riserus, U., Vessby, B., Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia 2005, 48, 19992005.
  • 36
    Sjogren, P., Sierra-Johnson, J., Gertow, K., Rosell, M. et al., Fatty acid desaturases in human adipose tissue: relationships between gene expression, desaturation indexes and insulin resistance. Diabetologia 2008, 51, 328335.
  • 37
    Melanson, E. L., Astrup, A., Donahoo, W. T., The relationship between dietary fat and fatty acid intake and body weight, diabetes, and the metabolic syndrome. Ann. Nutr. Metab. 2009, 55, 229243.
  • 38
    Vessby, B., Unsitupa, M., Hermansen, K., Riccardi, G. et al., Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU Study. Diabetologia 2001, 44, 312319.
  • 39
    Perez-Jimenez, F., Lopez-Miranda, J., Pinillos, M. D., Gomez, P. et al., A Mediterranean and a high-carbohydrate diet improve glucose metabolism in healthy young persons. Diabetologia 2001, 44, 20382043.
  • 40
    Lovejoy, J. C., Smith, S. R., Champagne, C. M., Most, M. M. et al., Effects of diets enriched in saturated (palmitic), monounsaturated (oleic), or trans (elaidic) fatty acids on insulin sensitivity and substrate oxidation in healthy adults. Diabetes Care 2002, 25, 12831288.
  • 41
    Garg, A., High-monounsaturated-fat diets for patients with diabetes mellitus: a meta-analysis. Am. J. Clin. Nutr. 1998, 67, 577S582S.
  • 42
    Berglund, L., Lefevre, M., Ginsberg, H. N., Kris-Etherton, P. M. et al., Comparison of monounsaturated fat with carbohydrates as a replacement for saturated fat in subjects with a high metabolic risk profile: studies in the fasting and postprandial states. Am. J. Clin. Nutr. 2007, 86, 16111620.
  • 43
    Tierney, A. C., McMonagle, J., Shaw, D. I., Gulseth, H. L. et al., Effects of dietary fat modification on insulin sensitivity and on other risk factors of the metabolic syndrome-LIPGENE: a European randomized dietary intervention study. Int. J. Obes. (Lond.) 2011, 35, 800809.
  • 44
    Turpeinen, O., Karvonen, M. J., Pekkarinen, M., Miettinen, M. et al., Dietary prevention of coronary heart disease: the Finnish Mental Hospital Study. Int. J. Epidemiol. 1979, 8, 99118.
  • 45
    Dayton, S., Pearce, M. L., Hashimoto, S., Fakler, L. J. et al., A controlled clinical trial of a diet high in unsaturated fat. Preliminary observations. N. Engl. J. Med. 1962, 266, 10171023.
  • 46
    de Lorgeril, M., Renaud, S., Mamelle, N., Salen, P. et al., Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 1994, 343, 14541459.
  • 47
    de Lorgeril, M., Salen, P., Martin, J. L., Monjaud, I. et al., Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation 1999, 99, 779785.
  • 48
    Adams, D. D., The great cholesterol myth; unfortunate consequences of Brown and Goldstein's mistake. Qjm 2011, 104, 867870.
  • 49
    Oliver, M., Dietary cholesterol, plasma cholesterol and coronary heart disease. Brit. Heart J. 1976, 38, 214218.
  • 50
    Pyorala, K., Dietary cholesterol in relation to plasma cholesterol and coronary heart disease. Am. J. Clin. Nutr. 1987, 45, 11761184.
  • 51
    Brown, M. S., Goldstein, J. L., How LDL receptors influence cholesterol and atherosclerosis. Sci. Am. 1984, 251, 5866.
  • 52
    Brown, M. S., Goldstein, J. L., A receptor-mediated pathway for cholesterol homeostasis. Science (New York, N.Y 1986, 232, 3447.
  • 53
    Wycherley, T. P., Noakes, M., Clifton, P. M., Cleanthous, X. et al., A high-protein diet with resistance exercise training improves weight loss and body composition in overweight and obese patients with type 2 diabetes. Diabetes Care 2010, 33, 969976.
  • 54
    Papakonstantinou, E., Triantafillidou, D., Panagiotakos, D. B., Koutsovasilis, A. et al., A high-protein low-fat diet is more effective in improving blood pressure and triglycerides in calorie-restricted obese individuals with newly diagnosed type 2 diabetes. Eur. J. Clin. Nutr. 2010, 64, 595602.
  • 55
    Larsen, T. M., Dalskov, S. M., van Baak, M., Jebb, S. A. et al., Diets with high or low protein content and glycemic index for weight-loss maintenance. N. Eng. J. Med. 2010, 363, 21022113.
  • 56
    De Miguel, C., Lund, H., Mattson, D. L., High dietary protein exacerbates hypertension and renal damage in Dahl SS rats by increasing infiltrating immune cells in the kidney. Hypertension 2011, 57, 269274.
  • 57
    Tuttle, K. R., Bruton, J. L., Perusek, M. C., Lancaster, J. L. et al., Effect of strict glycemic control on renal hemodynamic response to amino acids and renal enlargement in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1991, 324, 16261632.
  • 58
    Wrone, E. M., Carnethon, M. R., Palaniappan, L., Fortmann, S. P., Association of dietary protein intake and microalbuminuria in healthy adults: Third National Health and Nutrition Examination Survey. Am. J. Kidney Dis. 2003, 41, 580587.
  • 59
    Uribarri, J., Tuttle, K. R., Advanced glycation end products and nephrotoxicity of high-protein diets. Clin. J. Am. Soc. Nephrol. 2006, 1, 12931299.
  • 60
    Foo, S. Y., Heller, E. R., Wykrzykowska, J., Sullivan, C. J. et al., Vascular effects of a low-carbohydrate high-protein diet. Proc. Natl. Acad. Sci. USA 2009, 106, 1541815423.
  • 61
    Hu, F. B., Willett, W. C., Optimal diets for prevention of coronary heart disease. JAMA 2002, 288, 25692578.
  • 62
    Hubert, H. B., Feinleib, M., McNamara, P. M., Castelli, W. P., Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 1983, 67, 968977.
  • 63
    Danaei, G., Finucane, M. M., Lu, Y., Singh, G. M. et al., National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 2011, 378, 3140.
  • 64
    Wang, Y., Rimm, E. B., Stampfer, M. J., Willett, W. C. et al., Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am. J. Clin. Nutr. 2005, 81, 555563.
  • 65
    Anderson, J. W., Kendall, C. W., Jenkins, D. J., Importance of weight management in type 2 diabetes: review with meta-analysis of clinical studies. J. Am. Coll. Nutr. 2003, 22, 331339.
  • 66
    Mokdad, A. H., Serdula, M. K., Dietz, W. H., Bowman, B. A. et al., The spread of the obesity epidemic in the United States,1991-1998. JAMA 1999, 282, 15191522.
  • 67
    Flegal, K. M., Carroll, M. D., Ogden, C. L., Curtin, L. R., Prevalence and trends in obesity among US adults,1999-2008. JAMA 2010, 303, 235241.
  • 68
    Juonala, M., Saarikoski, L. A., Viikari, J. S., Oikonen, M. et al., A longitudinal analysis on associations of adiponectin levels with metabolic syndrome and carotid artery intima-media thickness. The Cardiovascular Risk in Young Finns Study. Atherosclerosis 2011, 217, 234239.
  • 69
    Matsubara, M., Maruoka, S., Katayose, S., Decreased plasma adiponectin concentrations in women with dyslipidemia. J. Clin. Endocrinol. Metab. 2002, 87, 27642769.
  • 70
    Uysal, K. T., Wiesbrock, S. M., Marino, M. W., Hotamisligil, G. S., Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997, 389, 610614.
  • 71
    McGillicuddy, F. C., Harford, K. A., Reynolds, C. M., Oliver, E. et al., Lack of interleukin-1 receptor I (IL-1RI) protects mice from high-fat diet-induced adipose tissue inflammation coincident with improved glucose homeostasis. Diabetes 2011, 60, 16881698.
  • 72
    Shi, H., Kokoeva, M. V., Inouye, K., Tzameli, I. et al., TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 2006, 116, 30153025.
  • 73
    Branen, L., Hovgaard, L., Nitulescu, M., Bengtsson, E. et al., Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscl. Thromb. Vas. Biol. 2004, 24, 21372142.
  • 74
    Higashimori, M., Tatro, J. B., Moore, K. J., Mendelsohn, M. E. et al., Role of toll-like receptor 4 in intimal foam cell accumulation in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 5057.
  • 75
    Michelsen, K. S., Wong, M. H., Shah, P. K., Zhang, W. et al., Lack of toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl. Acad. Sci. USA 2004, 101, 1067910684.
  • 76
    Chamberlain, J., Francis, S., Brookes, Z., Shaw, G. et al., Interleukin-1 regulates multiple atherogenic mechanisms in response to fat feeding. PloS one 2009, 4, e5073.
  • 77
    Mills, K. H., Dunne, A., Immune modulation: IL-1, master mediator or initiator of inflammation. Nat. Med. 2009, 15, 13631364.
  • 78
    Vandanmagsar, B., Youm, Y. H., Ravussin, A., Galgani, J. E. et al., The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 2011, 17, 179188.
  • 79
    Duewell, P., Kono, H., Rayner, K. J., Sirois, C. M. et al., NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010, 464, 13571361.
  • 80
    Nishimura, S., Manabe, I., Nagasaki, M., Eto, K. et al., CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 2009, 15, 914920.
  • 81
    Lumeng, C. N., DelProposto, J. B., Westcott, D. J., Saltiel, A. R., Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 2008, 57, 32393246.
  • 82
    Wen, H., Gris, D., Lei, Y., Jha, S. et al., Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 2011, 12, 408415.
  • 83
    Kathiresan, S., Otvos, J. D., Sullivan, L. M., Keyes, M. J. et al., Increased small low-density lipoprotein particle number: a prominent feature of the metabolic syndrome in the Framingham Heart Study. Circulation 2006, 113, 2029.
  • 84
    Howard, B. V., Ruotolo, G., Robbins, D. C., Obesity and dyslipidemia. Endocrinol. Metab. Clin. North. Am. 2003, 32, 855867.
  • 85
    Rader, D. J., Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. Am. J. Med. 2007, 120, S12S18.
  • 86
    Ginsberg, H. N., Zhang, Y. L., Hernandez-Ono, A., Metabolic syndrome: focus on dyslipidemia. Obesity (Silver Spring) 2006, 14, 41S49S.
  • 87
    Donnelly, K. L., Smith, C. I., Schwarzenberg, S. J., Jessurun, J. et al., Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 2005, 115, 13431351.
  • 88
    Targher, G., Day, C. P., Bonora, E., Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N. Eng. J. Med. 2010, 363, 13411350.
  • 89
    Park, K. H., Shin, D. G., Kim, J. R., Hong, J. H. et al., The functional and compositional properties of lipoproteins are altered in patients with metabolic syndrome with increased cholesteryl ester transfer protein activity. Int. J. Mol. Med. 2010, 25, 129136.
  • 90
    Badellino, K. O., Wolfe, M. L., Reilly, M. P., Rader, D. J., Endothelial lipase is increased in vivo by inflammation in humans. Circulation 2008, 117, 678685.
  • 91
    Paradis, M. E., Badellino, K. O., Rader, D. J., Tchernof, A. et al., Visceral adiposity and endothelial lipase. J. Clin. Endocrinol. Metab. 2006, 91, 35383543.
  • 92
    Rashid, S., Barrett, P. H., Uffelman, K. D., Watanabe, T. et al., Lipolytically modified triglyceride-enriched HDLs are rapidly cleared from the circulation. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 483487.
  • 93
    Bell, D. S., O'Keepe, J. H., Lowering the triplyceride/high-density lipoprotein cholesterol and its association with the beneficial impact of pioglitazone on coronary autherosclerosis in the PERISCOPE study is likely due to lowering insulin resistance. J. Am. Coll. Cardiol. 2011, 58, 778.
  • 94
    Knowler, W. C., Barrett-Connor, E., Fowler, S. E., Hamman, R. F. et al., Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Eng. J. Med. 2002, 346, 393403.
  • 95
    Krauss, R. M., Blanche, P. J., Rawlings, R. S., Fernstrom, H. S. et al., Separate effects of reduced carbohydrate intake and weight loss on atherogenic dyslipidemia. Am. J. Clin. Nutr. 2006, 83, 10251031; quiz 1205.
  • 96
    Nicholls, S. J., Tuzcu, E. M., Wolski, K., Bayturan, O., et al., Lowering the triglyceride/high-density lipoprotein cholesterol ratio is associated with the beneficial impact of pioglitazone on progression of coronary atherosclerosis in diabetic patients: insights from the PERISCOPE (Pioglitazone Effect on Regression of Intravascular Sonographic Coronary Obstruction Prospective Evaluation) study. J. Am. Coll. Cardiol. 2011, 57, 153159.
  • 97
    Jebb, S. A., Lovegrove, J. A., Griffin, B. A., Frost, G. S. et al., Effect of changing the amount and type of fat and carbohydrate on insulin sensitivity and cardiovascular risk: the RISCK (Reading, Imperial, Surrey, Cambridge, and Kings) trial. Am. J. Clin. Nutr. 2010, 92, 748758.
  • 98
    Geloneze, B., Tambascia, M. A., Pareja, J. C., Repetto, E. M. et al., The insulin tolerance test in morbidly obese patients undergoing bariatric surgery. Obesity Res. 2001, 9, 763769.
  • 99
    Shai, I., Schwarzfuchs, D., Henkin, Y., Shahar, D. R. et al., Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N. Eng. J. Med. 2008, 359, 229241.
  • 100
    Buchwald, H., Estok, R., Fahrbach, K., Banel, D. et al., Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am. J. Med. 2009, 122, 248-256 e245.
  • 101
    Aron-Wisnewsky, J., Julia, Z., Poitou, C., Bouillot, J. L. et al., Effect of bariatric surgery-induced weight loss on SR-BI, ABCG1-, and ABCA1-mediated cellular cholesterol efflux in obese women. J. Clin. Endocrinol. Metab. 2011, 96, 11511159.
  • 102
    O'Rahilly, S., Human genetics illuminates the paths to metabolic disease. Nature 2009, 462, 307314.
  • 103
    Billings, L. K., Florez, J. C., The genetics of type 2 diabetes: what have we learned from GWAS? Ann. NY Acad. Sci. 2010, 1212, 5977.
  • 104
    Grayson, M., Nutrigenomics. Nature 2010, 468, S1.
  • 105
    Frood, A., Technology: a flavour of the future. Nature 2010, 468, S21S22.
  • 106
    Roche, H. M., Phillips, C., Gibney, M. J., The metabolic syndrome: the crossroads of diet and genetics. Proc. Nutr. Soc. 2005, 64, 371377.
  • 107
    Costanza, M. C., Cayanis, E., Ross, B. M., Flaberty, M. S. et al., Relative contributions of genes, environment, and interactions to blood lipid concentrations in a general adult population. Am. J. Epidemiol. 2005, 161, 714724.
  • 108
    Ordovas, J. M., Corella, D., Demissie, S., Cupples, L. A. et al., Dietary fat intake determines the effect of a common polymorphism in the hepatic lipase gene promoter on high-density lipoprotein metabolism: evidence of a strong dose effect in this gene-nutrient interaction in the Framingham Study. Circulation 2002, 106, 23152321.
  • 109
    Elosua, R., Ordovas, J. M., Cupples, L. A., Lai, C. Q. et al., Variants at the APOA5 locus, association with carotid atherosclerosis, and modification by obesity: the Framingham Study. J. Lip. Res. 2006, 47, 990996.
  • 110
    Lai, C. Q., Corella, D., Demissie, S., Cupples, L. A. et al., Dietary intake of n-6 fatty acids modulates effect of apolipoprotein A5 gene on plasma fasting triglycerides, remnant lipoprotein concentrations, and lipoprotein particle size: the Framingham Heart Study. Circulation 2006, 113, 20622070.
  • 111
    Corella, D., Lai, C. Q., Demissie, S., Cupples, L. A. et al., APOA5 gene variation modulates the effects of dietary fat intake on body mass index and obesity risk in the Framingham Heart Study. J. Mol. Med. (Berlin, Germany) 2007, 85, 119128.
  • 112
    Moreno, J. A., Lopez-Miranda, J., Marin, C., Gomez, P. et al., The influence of the apolipoprotein E gene promoter (-219G/T) polymorphism on postprandial lipoprotein metabolism in young normolipemic males. J. Lip. Res. 2003, 44, 20592064.
  • 113
    Moreno, J. A., Perez-Jimenez, F., Marin, C., Gomez, P. et al., Apolipoprotein E gene promoter -219G->T polymorphism increases LDL-cholesterol concentrations and susceptibility to oxidation in response to a diet rich in saturated fat. Am. J. Clin. Nutr. 2004, 80, 14041409.
  • 114
    Moreno, J. A., Perez-Jimenez, F., Marin, C., Perez-Martinez, P. et al., The apolipoprotein E gene promoter (-219G/T) polymorphism determines insulin sensitivity in response to dietary fat in healthy young adults. J. Nutr. 2005, 135, 25352540.
  • 115
    Phillips, C. M., Goumidi, L., Bertrais, S., Ferguson, J. F. et al., Complement component 3 polymorphisms interact with polyunsaturated fatty acids to modulate risk of metabolic syndrome. Am. J. Clin. Nutr. 2009, 90, 16651673.
  • 116
    Phillips, C. M., Goumidi, L., Bertrais, S., Ferguson, J. F. et al., Additive effect of polymorphisms in the IL-6, LTA, and TNF-{alpha} genes and plasma fatty acid level modulate risk for the metabolic syndrome and its components. J. Clin. Endocrinol. Metab. 2010, 95, 13861394.
  • 117
    Holmes, E., Wilson, I. D., Nicholson, J. K., Metabolic phenotyping in health and disease. Cell 2008, 134, 714717.
  • 118
    O'Sullivan, A., Gibney, M. J., Connor, A. O., Mion, B. et al., Biochemical and metabolomic phenotyping in the identification of a vitamin D responsive metabotype for markers of the metabolic syndrome. Mol. Nutr. Food Res. 2011, 55, 679690.
  • 119
    van Ommen, B., Keijer, J., Kleemann, R., Elliott, R. et al., The challenges for molecular nutrition research 2: quantification of the nutritional phenotype. Genes Nutr. 2008, 3, 5159.