Get access

Low dietary folate and methylenetetrahydrofolate reductase deficiency may lead to pregnancy complications through modulation of ApoAI and IFN-γ in spleen and placenta, and through reduction of methylation potential


Correspondence: Professor Rima Rozen, Departments of Human Genetics and Pediatrics, McGill University, Montreal Children's Hospital Research Institute, 4060 Ste-Catherine West, Room 200, Montreal, QC H3Z 2Z3, Canada


Fax: +1-514-412-4331



Genetic or nutritional disturbances in folate metabolism lead to hyperhomocysteinemia and adverse reproductive outcomes. Folate-dependent homocysteine remethylation is required for methylation reactions and may influence choline/betaine metabolism. Hyperhomocysteinemia has been suggested to play a role in inflammation. The goal of this study was to determine whether folate-related pregnancy complications could be due to altered expression of some inflammatory mediators or due to disturbances in methylation intermediates.

Methods and results

Pregnant mice with or without a deficiency of methylenetetrahydrofolate reductase (MTHFR) were fed control diets or folate-deficient (FD) diets; tissues were collected at embryonic day 14.5. FD decreased plasma phosphocholine and increased plasma glycerophosphocholine and lysophosphatidylcholine. Liver betaine, phosphocholine, and S-adenosylmethionine:S-adenosylhomocysteine ratios were reduced in FD. In liver, spleen, and placenta, the lowest levels of apolipoprotein AI (ApoAI) were observed in Mthfr+/– mice fed FD. Increased interferon-gamma (IFN-γ) was observed in spleen and placentae due to FD or Mthfr genotype. Plasma homocysteine correlated negatively with liver and spleen ApoAI, and positively with IFN-γ.


Low dietary folate or Mthfr deficiency during pregnancy may result in adverse pregnancy outcomes by altering expression of the inflammatory mediators ApoAI and IFN-γ in spleen and placenta. Disturbances in choline metabolism or methylation reactions may also play a role.