Cross-talk between microRNAs, nuclear factor E2-related factor 2, and heme oxygenase-1 in ochratoxin A-induced toxic effects in renal proximal tubular epithelial cells


Correspondence: Dr. Agnieszka Loboda, Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland


Fax: +48-12-664-69-18



Ochratoxin A (OTA) is a mycotoxin exhibiting nephrotoxic and potential carcinogenic activity. We investigated the cross-talk between microRNAs, nuclear factor E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in ochratoxin A-mediated effects.

Methods and results

In porcine renal proximal tubular cells, OTA increased expression of profibrotic transforming growth factors β (TGFβ) while concomitantly decreasing expression of Nrf2, HO-1, and erythropoietin. Adenoviral overexpression of Nrf2 counteracted OTA-mediated reduction in HO-1 and erythropoietin expression and cell proliferation as well as increase in reactive oxygen species (ROS) generation and TGFβ expression. Additionally, inhibition of HO activity enhanced whereas adenoviral overexpression of HO-1 reduced expression of TGFβ. Moreover, antioxidants, N-acetyl-cysteine and desferioxamine, prevented OTA-mediated enhancement of ROS generation, and TGFβ expression. Finally, OTA modulated microRNA processing by upregulating LINeage protein 28 and DiGeorge syndrome critical region-8, increasing the total pool of cellular microRNAs and elevating the expression of miR-132 and miR-200c. Inhibition of miR-132 by specific antagomir restored the OTA-driven reduction in Nrf2 expression. Moreover, anti-miR-132 and anti-miR-200c counteracted OTA-mediated decrease in HO-1 levels as well as increase in ROS production and TGFβ expression.


We showed that attenuation of Nrf2 and HO-1 expression through induction of miR-132 and miR-200c by OTA elevates ROS levels and profibrotic TGFβ expression.