SEARCH

SEARCH BY CITATION

Keywords:

  • Anthocyanin;
  • Antioxidant response element;
  • Bilberry pomace extract;
  • Nrf2 activation;
  • Phloroglucinol aldehyde

In a human pilot intervention study (healthy + ileostomy probands), the questions were addressed whether in vivo consumption of an anthocyanin-rich bilberry (Vaccinium myrtillius L.) pomace extract (BE) affects (i) the transcription of Nrf2-dependent genes in peripheral blood mononuclear cells (PBMC), indicative for systemic effects, and (ii) the level of oxidative DNA damage in these cells. In healthy test subjects transcripts of NAD(P)H quinone oxidoreductase 1 (NQO1) were significantly elevated throughout the observation period (1–8 h), whereas transcription of heme oxygenase 1 (HO-1) and Nrf2 was significantly decreased. NQO1 and HO-1 transcription remained unchanged in the ileostomy probands, whereas Nrf2-transcription was suppressed in both groups. Decrease in oxidative DNA damage was observed 2 h after BE consumption again only in healthy subjects. In vitro studies using a reporter gene approach (CHO) and qPCR (HT29) indicate that not the intact anthocyanins/anthocyanidins are the activating constituents but the intestinal degradation product phloroglucinol aldehyde (PGA). Taken together, consumption of anthocyanin-rich BE was found to modulate Nrf2-dependent gene expression in PBMCs indicative for systemic activity. Limitation of the effect to healthy test subjects suggests a role of colonic processes for bioactivity, supported by the results on Nrf2-activating properties of the intestinal anthocyanin degradation product PGA.