9 References

  • 1
    Herman, J. G., Baylin, S. B., Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 2003, 349, 20422054.
  • 2
    Waterland, R. A., Jirtle, R. L., Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell Biol. 2003, 23, 52935300.
  • 3
    Laukkanen, M. O., Mannermaa, S., Hiltunen, M. O., Aittomaki, S. et al., Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 21712178.
  • 4
    Hiltunen, M. O., Turunen, M. P., Hakkinen, T. P., Rutanen, J. et al., DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc. Med. 2002, 7, 511.
  • 5
    Lund, G., Andersson, L., Lauria, M., Lindholm, M. et al., DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol. Chem. 2004, 279, 2914729154.
  • 6
    Post, W. S., Goldschmidt-Clermont, P. J., Wilhide, C. C., Heldman, A. W. et al., Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc. Res. 1999, 43, 985991.
  • 7
    Zhu, S., Goldschmidt-Clermont, P. J., Dong, C., Inactivation of the monocarboxylate transporter MCT3 by DNA methylation in atherosclerosis. Circulation 2005, 112, 13531361.
  • 8
    Finkelstein, J. D., Methionine metabolism in liver diseases. Am. J. Clin. Nutr. 2003, 77, 10941095.
  • 9
    Stover, P. J., Physiology of folate and vitamin B12 in health and disease. Nutr. Rev. 2004, 62, S3S12.
  • 10
    Mato, J. M., Martinez-Chantar, M. L., Lu, S. C., Methionine metabolism and liver disease. Ann. Rev. Nutr. 2008, 28, 273293.
  • 11
    Garrow, T. A., Purification, kinetic properties, and cDNA cloning of mammalian betaine-homocysteine methyltransferase. J. Biol. Chem. 1996, 271, 2283122838.
  • 12
    Vance, J. E., Vance, D. E., Phospholipid biosynthesis in mammalian cells. Biochem. Cell Biol. 2004, 82, 113128.
  • 13
    Selhub, J., Homocysteine metabolism. Ann. Rev. Nutr. 1999, 19, 217246.
  • 14
    Brosnan, J. T., Brosnan, M. E., The sulfur-containing amino acids: an overview. J. Nutr. 2006, 136, 1636S1640S.
  • 15
    Law, J. A., Jacobsen, S. T, Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010, 11, 204220.
  • 16
    Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D. et al., Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462, 315322.
  • 17
    Bestor, T. H., The DNA methyltransferases of mammals. Hum. Mol. Genet. 2000, 9, 23952402.
  • 18
    Reik, W., Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007, 447, 425432.
  • 19
    Probst, A. V., Almouzni, G., Heterochromatin establishment in the context of genome-wide epigenetic reprogramming. Trends Genet. 2011, 27, 177185.
  • 20
    Waterland, R. A., Lin, J. R., Smith, C. A., Jirtle, R. L., Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum. Mol. Genet. 2006, 15, 705716.
  • 21
    Devlin, A. M., Singh, R., Wade, R. E., Innis, S. M. et al., Hypermethylation of Fads2 and altered hepatic fatty acid and phospholipid metabolism in mice with hyperhomocysteinemia. J. Biol. Chem. 2007, 282, 3708237090.
  • 22
    Glier, M. B., Ngai, Y. F., Sulistyoningrum, D. C., Aeliunas, R. E. et al., Tissue-specific relationship of S-adenosylhomocysteine with allele-specific H19/Igf2 methylation and imprinting in mice with hyperhomocysteinemia. Epigenetics 2013, 8, 4453.
  • 23
    Deaton, A. M., Bird, A., CpG islands and the regulation of transcription. Genes Dev. 2011, 25, 10101022.
  • 24
    Irizarry, R. A., Ladd-Acosta, C., Wen, B., Wu, Z. et al., The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 2009, 41, 178186.
  • 25
    Wutz, A., Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat. Rev. Genet. 2011, 12, 542553.
  • 26
    Ideraabdullah, F. Y., Vigneau, S., Bartolomei, M. S., Genomic imprinting mechanisms in mammals. Mutat. Res. 2008, 647, 7785.
  • 27
    Weaver, I. C. G., Cervoni, N., Champagne, F. A., D'Alessio, A. C. et al., Epigenetic programming by maternal behavior. Nat. Neurosci. 2004, 7, 847854.
  • 28
    Ballestar, E., Wolffe, A. P., Methyl-CpG-binding proteins. Eur. J. Biochem. 2001, 268, 16.
  • 29
    Jacob, R. A., Gretz, D. M., Taylor, P. C., James, S. J. et al., Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J. Nutr. 1998, 128, 12041212.
  • 30
    Rampersaud, G. C., Kauwell, G. P., Hutson, A. D., Cerda, J. J. et al., Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am. J. Clin. Nutr. 2000, 72, 9981003.
  • 31
    Frosst, P., Blom, H. J., Milos, R., Goyette, P. et al., A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 1995, 10, 111113.
  • 32
    Devlin, A. M., Clarke, R., Birks, J., Evans, J. G. et al., Interactions among polymorphisms in folate-metabolizing genes and serum total homocysteine concentrations in a healthy elderly population. Am. J. Clin. Nutr. 2006, 83, 708713.
  • 33
    Castro, R., Rivera, I., Ravasco, P., Camilo, M. E. et al., 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C>T and 1298A>C mutations are associated with DNA hypomethylation. J. Med. Genet. 2004, 41, 454458.
  • 34
    Sohn, K. J., Jang, H., Campan, M., Weisenberger, D. J. et al., The methylenetetrahydrofolate reductase C677T mutation induces cell-specific changes in genomic DNA methylation and uracil misincorporation: a possible molecular basis for the site-specific cancer risk modification. Int. J. Cancer 2009, 124, 19992005.
  • 35
    Friso, S., Choi, S. W., Girelli, D., Mason, J. B. et al., A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc. Natl. Acad. Sci. USA 2002, 99, 56065611.
  • 36
    Yi, P., Melnyk, S., Pogribna, M., Pogribny, I. P. et al., Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J. Biol. Chem. 2000, 275, 2931829323.
  • 37
    Castro, R., Rivera, I., Struys, E. A., Jansen, E. E. et al., Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin. Chem. 2003, 49, 12921296.
  • 38
    Dayal, S., Bottiglieri, T., Arning, E., Maeda, N. et al., Endothelial dysfunction and elevation of S-adenosylhomocysteine in cystathionine beta-synthase-deficient mice. Circ. Res. 2001, 88, 12031209.
  • 39
    Devlin, A. M., Arning, E., Bottiglieri, T., Faraci, F. M. et al., Effect of Mthfr genotype on diet-induced hyperhomocysteinemia and vascular function in mice. Blood 2004, 103, 26242629.
  • 40
    Devlin, A. M., Bottiglieri, T., Domann, F. E., Lentz, S. R., Tissue-specific changes in H19 methylation and expression in mice with hyperhomocysteinemia. J. Biol. Chem. 2005, 280, 2550625511.
  • 41
    Hoffman, D. R., Marion, D. W., Cornatzer, W. E., Duerre, J. A., S-adenosylmethionine and S-adenosylhomocystein metabolism in isolated rat liver. Effects of l-methionine, l-homocystein, and adenosine. J. Biol. Chem. 1980, 255, 1082210827.
  • 42
    De Cabo, S. F., Hazen, M. J., Molero, M. L., Fernandez-Piqueras, J., S-adenosyl-l-homocysteine: a non-cytotoxic hypomethylating agent. Experientia 1994, 50, 658659.
  • 43
    Heil, S. G., Riksen, N. P., Boers, G. H., Smulders, Y. et al., DNA methylation status is not impaired in treated cystathionine beta-synthase (CBS) deficient patients. Molec. Genet. Metab. 2007, 91, 5560.
  • 44
    Fux, R., Kloor, D., Hermes, M., Rock, T. et al., Effect of acute hyperhomocysteinemia on methylation potential of erythrocytes and on DNA methylation of lymphocytes in healthy male volunteers. Am. J. Physiol. Renal Physiol. 2005, 289, F786F792.
  • 45
    Ingrosso, D., Cimmino, A., Perna, A. F., Masella, L. et al., Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet 2003, 361, 16931699.
  • 46
    Choumenkovitch, S. F., Selhub, J., Bagley, P. J., Maeda, N. et al., In the cystathionine {beta}-synthase knockout mouse, elevations in total plasma homocysteine increase tissue S-adenosylhomocysteine, but responses of S-adenosylmethionine and DNA methylation are tissue specific. J. Nutr. 2002, 132, 21572160.
  • 47
    Homocysteine studies collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 2002, 288, 20152022.
  • 48
    Bonaa, K. H., Njolstad, I., Ueland, P. M., Schirmer, H. et al., For the NORVIT trial investigators, homocysteine lowering and cardiovascular events after acute myocardial infarction. N. Engl. J. Med. 2006, 354, 15781588.
  • 49
    Toole, J. F., Malinow, M. R., Chambless, L. E., Spence, J. D. et al., Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the vitamin intervention for stroke prevention (VISP) randomized controlled trial. JAMA 2004, 291, 565575.
  • 50
    Meyers, M. R., Gokce, N., Endothelial dysfunction in obesity: etiological role in atherosclerosis. Curr. Opinion Endo. Diabetes Obesity 2007, 14, 365369.
  • 51
    Bellamy, M. F., McDowell, I. F., Ramsey, M. W., Brownlee, M. et al., Hyperhomocysteinemia after an oral methionine load acutely impairs endothelial function in healthy adults. Circulation 1998, 98, 18481852.
  • 52
    Lentz, S. R., Erger, R. A., Dayal, S., Maeda, N. et al., Folate dependence of hyperhomocysteinemia and vascular dysfunction in cystathionine beta-synthase-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, H970H975.
  • 53
    Dayal, S., Arning, E., Bottiglieri, T., Boger, R. H. et al., Cerebral vascular dysfunction mediated by superoxide in hyperhomocysteinemic mice. Stroke 2004, 35, 19571962.
  • 54
    Weiss, N., Heydrick, S. J., Postea, O., Keller, C. et al., Influence of hyperhomocysteinemia on the cellular redox state–impact on homocysteine-induced endothelial dysfunction. Clin. Chem. Lab Med. 2003, 41, 14551461.
  • 55
    Dayal, S., Devlin, A. M., McCaw, R. B., Liu, M. L. et al., Cerebral vascular dysfunction in methionine synthase-deficient mice. Circulation 2005, 112, 737744.
  • 56
    Antoniades, C., Shirodaria, C., Leeson, P., Baarholm, O. A. et al., MTHFR 677 C>T polymorphism reveals functional importance for 5-methyltetrahydrofolate, not homocysteine, in regulation of vascular redox state and endothelial function in human atherosclerosis. Circulation 2009, 119, 25072515.
  • 57
    Sundler, R., Akesson, B., Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates. J. Biol. Chem. 1975, 250, 33593367.
  • 58
    DeLong, C. J., Shen, Y. J., Thomas, M. J., Cui, Z., Molecular distinction of phosphatidylcholine synthesis between the CDP-choline pathway and phosphatidylethanolamine methylation pathway. J. Biol. Chem. 1999, 274, 2968329688.
  • 59
    Yao, Z. M., Vance, D. E., The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J. Biol. Chem. 1988, 263, 29983004.
  • 60
    Yao, Z. M., Vance, D. E., Head group specificity in the requirement of phosphatidylcholine biosynthesis for very low density lipoprotein secretion from cultured hepatocytes. J. Biol. Chem. 1989, 264, 1137311380.
  • 61
    Namekata, K., Enokido, Y., Ishii, I., Nagai, Y. et al., Abnormal lipid metabolism in cystathionine {beta}-synthase-deficient mice, an animal model for hyperhomocysteinemia. J. Biol. Chem. 2004, 279, 5296152969.
  • 62
    Mikael, L. G., Genest, J., Jr., Rozen, R., Elevated homocysteine reduces apolipoprotein A-I expression in hyperhomocysteinemic mice and in males with coronary artery disease. Circ. Res. 2006, 98, 564571.
  • 63
    Qujeq D, Omran T. S. , Hosini L., Correlation between total homocysteine, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol in the serum of patients with myocardial infarction. Clin. Biochem. 2001, 34, 97101.
  • 64
    van Straten, E. M. E., Bloks, V. W., Huijkman, N. C. A., Baller, J. F. W. et al., The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction. Am. J. Physiol.- Regul. Int. Comp. Physiol. 2010, 298, R275R282.
  • 65
    El-Khairy, L., Ueland, P. M., Refsum, H., Graham, I. M. et al., Plasma total cysteine as a risk factor for vascular disease : the European Concerted Action Project. Circulation 2001, 103, 25442549.
  • 66
    van den Brandhof, W. E., Haks, K., Schouten, E. G., Verhoef, P., The relation between plasma cysteine, plasma homocysteine and coronary atherosclerosis. Atherosclerosis 2001, 157, 403409.
  • 67
    Elshorbagy, A. K., Nurk, E., Gjesdal, C. G., Tell, G. S. et al., Homocysteine, cysteine, and body composition in the Hordaland Homocysteine Study: does cysteine link amino acid and lipid metabolism? Am. J. Clin. Nutr. 2008, 88, 738746.
  • 68
    Okawa, H., Morita, T., Sugiyama, K., Cysteine supplementation decreases plasma homocysteine concentration in rats fed on a low-casein diet in rats. Biosc. Biotech. Biochem. 2007, 71, 9197.
  • 69
    Elshorbagy, A. K., Valdivia-Garcia, M., Mattocks, D. A. L., Plummer, J. D. et al., Cysteine supplementation reverses methionine restriction effects on rat adiposity: significance of stearoyl-coenzyme A desaturase. J. Lipid Res. 2011, 52, 104112.
  • 70
    Elshorbagy, A. K., Church, C., Valdivia-Garcia, M., Smith, A. D. et al., Dietary cystine level affects metabolic rate and glycaemic control in adult mice. J. Nutr. Biochem. 2012, 23, 332340.
  • 71
    Araki, A., Sako, Y., Fukushima, Y., Matsumoto, M. et al., Plasma sulfhydryl-containing amino acids in patients with cerebral infarction and in hypertensive subjects. Atherosclerosis 1989, 79, 139146.
  • 72
    Mansoor, M. A., Bergmark, C., Svardal, A. M., Lonning, P. E. et al., Redox status and protein binding of plasma homocysteine and other aminothiols in patients with early-onset peripheral vascular disease. Arterioscler. Thromb. Vasc. Biol. 1995, 15, 232240.
  • 73
    Verhoef, P., Stampfer, M. J., Buring, J. F., Gaziano, J. M. et al., Homocysteine metabolism and risk of myocardial infarction: relation with vitamins B6, B12, and folate. Am. J. Epidemiol. 1996, 143, 845859.
  • 74
    Jacob, N., Bruckert, E., Giral, P., Foglietti, M. J. et al., Cysteine is a cardiovascular risk factor in hyperlipidemic patients. Atherosclerosis 1999, 146, 5359.
  • 75
    Wang, J. C., Bennett, M., Aging and atherosclerosis. Circ. Res. 2012, 111, 245259.
  • 76
    Libby, P., Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 20452051.
  • 77
    Kim, M., Long, T. I., Arakawa, K., Wang, R. et al., DNA methylation as a biomarker for cardiovascular disease risk. PLoS ONE 2010, 5, e9692.
  • 78
    Baccarelli, A., Tarantini, L., Wright, R. O., Bollati, V. et al., Repetitive element DNA methylation and circulating endothelial and inflammation markers in the VA normative aging study. Epigenetics 2010, 5, 17.
  • 79
    Cash, H. L., McGarvey, S. T., Houseman, E. A., Marsit, C. J., et al., Cardiovascular disease risk factors and DNA methylation at the LINE-1 repeat region in peripheral blood from Samoan islanders. Epigenetics 2011, 6, 12571264.
  • 80
    Friso, S., Lotto, V., Choi, S. W., Girelli, D. et al., Promoter methylation in coagulation F7 gene influences plasma FVII concentrations and relates to coronary artery disease. J. Med. Genet. 2012, 49, 192199.
  • 81
    De Wals, P., Tairou, F., Van Allen, M. I., Uh, S. H. et al., Reduction in neural-tube defects after folic acid fortification in Canada. N. Engl. J. Med. 2007, 357, 135142.
  • 82
    Colapinto, C. K., O'Connor, D. L., Tremblay, M. S., Folate status of the population in the Canadian Health Measures Survey. CMAJ 2011, 183, E100E106.
  • 83
    Pfeiffer, C. M., Johnson, C. L., Jain, R. B., Yetley, E. A. et al., Trends in blood folate and vitamin B-12 concentrations in the United States, 1988 2004. Am. J. Clin. Nutr. 2007, 86, 718727.
  • 84
    Boulet, S. L., Yang, Q., Mai, C., Kirby, R. S. et al., Trends in the postfortification prevalence of spina bifida and anencephaly in the United States. Birth Defects Res. A Clin. Mol. Teratol. 2008, 82, 527532.
  • 85
    Jung, A. Y., Smulders, Y., Verhoef, P., Kok, F. J. et al., No effect of folic acid supplementation on global DNA methylation in men and women with moderately elevated homocysteine. PLoS One 2011, 6, e24976
  • 86
    Crider, K. S., Quinlivan, E. P., Berry, R. J., Hao, L. et al., Genomic DNA methylation changes in response to folic acid supplementation in a population-based intervention study among women of reproductive age. PLoS One 2011, 6, e28144
  • 87
    Pizzolo, F., Blom, H. J., Choi, S. W., Girelli, D. et al., Folic acid effects on S-adenosylmethionine, S-adenosylhomocysteine, and DNA methylation in patients with intermediate hyperhomocysteinemia. J. Am. Coll. Nutr. 2011, 30, 1118.
  • 88
    Scott, J. M., Folate and vitamin B12. Proc. Nutr. Soc. 1999, 58, 441448.
  • 89
    Morris, M. S., Jacques, P. F., Rosenberg, I. H., Selhub, J., Folate and vitamin B-12 status in relation to anemia, macrocytosis, and cognitive impairment in older Americans in the age of folic acid fortification. Am. J. Clin. Nutr. 2007, 85, 193200.
  • 90
    MacFarlane, A. J., Greene-Finestone, L. S., Shi, Y., Vitamin B-12 and homocysteine status in a folate-replete population: results from the Canadian Health Measures Survey. Am. J. Clin. Nutr. 2011, 94, 10791087.