5 References

  • 1
    Chun, O. K., Chung, S. J., Song, W. O., Estimated dietary flavonoid intake and major food sources of U.S. adults. J. Nutr. 2007, 137, 12441252.
  • 2
    Hooper, L., Kay, C., Abdelhamid, A., Kroon, P. A. et al., Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am. J. Clin. Nutr. 2012, 95, 740751.
  • 3
    Hooper, L., Kroon, P. A., Rimm, E. B., Cohn, J. S. et al., Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2008, 88, 3850.
  • 4
    Schroeter, H., Heiss, C., Balzer, J., Kleinbongard, P. et al., (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. USA 2006, 103, 10241029.
  • 5
    Loke, W. M., Hodgson, J. M., Proudfoot, J. M., McKinley, A. J. et al., Pure dietary flavonoids quercetin and (-)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am. J. Clin. Nutr. 2008, 88, 10181025.
  • 6
    Heiss, C., Dejam, A., Kleinbongard, P., Schewe, T. et al., Vascular effects of cocoa rich in flavan-3-ols. Jama - J. Am. Med. Assoc. 2003, 290, 10301031.
  • 7
    Heiss, C., Kleinbongard, P., Dejam, A., Perre, S. et al., Acute consumption of flavanol-rich cocoa and the reversal of endothelial dysfunction in smokers. J. Am. Coll. Cardiol. 2005, 46, 12761283.
  • 8
    Saha, S., Hollands, W., Needs, P. W., Ostertag, L. M. et al., Human O-sulfated metabolites of (-)-epicatechin and methyl-(-)-epicatechin are poor substrates for commercial aryl-sulfatases: implications for studies concerned with quantifying epicatechin bioavailability. Pharmacol. Res. 2012, 65, 592602.
  • 9
    Holt, R. R., Lazarus, S. A., Sullards, M. C., Zhu, Q. Y. et al., Procyanidin dimer B2 [epicatechin-(4beta-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am. J. Clin. Nutr. 2002, 76, 798804.
  • 10
    Spadafranca, A., Martinez Conesa, C., Sirini, S., Testolin, G., Effect of dark chocolate on plasma epicatechin levels, DNA resistance to oxidative stress and total antioxidant activity in healthy subjects. Br. J. Nutr. 2010, 103, 10081014.
  • 11
    Mullen, W., Borges, G., Donovan, J. L., Edwards, C. A. et al., Milk decreases urinary excretion but not plasma pharmacokinetics of cocoa flavan-3-ol metabolites in humans. Am. J. Clin. Nutr. 2009, 89, 17841791.
  • 12
    Richelle, M., Tavazzi, I., Enslen, M., Offord, E. A., Plasma kinetics in man of epicatechin from black chocolate. Eur. J. Clin. Nutr. 1999, 53, 2226.
  • 13
    Keogh, J. B., McInerney, J., Clifton, P. M., The effect of milk protein on the bioavailability of cocoa polyphenols. J. Food Sci. 2007, 72, S230S233.
  • 14
    Roura, E., Andres-Lacueva, C., Estruch, R., Mata-Bilbao, M. L. et al., Milk does not affect the bioavailability of cocoa powder flavonoid in healthy human. Ann. Nutr. Metab. 2007, 51, 493498.
  • 15
    Schramm, D. D., Karim, M., Schrader, H. R., Holt, R. R. et al., Food effects on the absorption and pharmacokinetics of cocoa flavanols. Life Sci. 2003, 73, 857869.
  • 16
    Wang, J. F., Schramm, D. D., Holt, R. R., Ensunsa, J. L. et al., A dose-response effect from chocolate consumption on plasma epicatechin and oxidative damage. J. Nutr. 2000, 130, 2115S2119S.
  • 17
    Rein, D., Lotito, S., Holt, R. R., Keen, C. L. et al., Epicatechin in human plasma: in vivo determination and effect of chocolate consumption on plasma oxidation status. J. Nutr. 2000, 130, 2109S2114S.
  • 18
    Baba, S., Osakabe, N., Yasuda, A., Natsume, M. et al., Bioavailability of (-)-epicatechin upon intake of chocolate and cocoa in human volunteers. Free Radic. Res. 2000, 33, 635641.
  • 19
    Borges, G., Mullen, W., Mullan, A., Lean, M. E. et al., Bioavailability of multiple components following acute ingestion of a polyphenol-rich juice drink. Mol. Nutr. Food Res., 54 Suppl 2, S268S277.
  • 20
    Van Het Hof, K. H., Kivits, G. A., Weststrate, J. A., Tijburg, L. B., Bioavailability of catechins from tea: the effect of milk. Eur. J. Clin. Nutr. 1998, 52, 356359.
  • 21
    Kyle, J. A. M., Morrice, P. C., McNeill, G., Duthie, G. G., Effects of infusion time and addition of milk on content and absorption of polyphenols from black tea. J. Agric. Food Chem. 2007, 55, 48894894.
  • 22
    Hendrich, S., Bioavailability of isoflavones. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 777, 203210.
  • 23
    de Pascual-Teresa, S., Moreno, D. A., Garcia-Viguera, C., Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int. J. Mol. Sci. 2010, 11, 16791703.
  • 24
    Prior, R. L., Gu, L., Occurrence and biological significance of proanthocyanidins in the American diet. Phytochemistry 2005, 66, 22642280.
  • 25
    Nishijima, T., Iwai, K., Saito, Y., Takida, Y. et al., Chronic ingestion of apple pectin can enhance the absorption of quercetin. J. Agric. Food Chem. 2009, 57, 25832587.
  • 26
    Sanaka, M., Yamamoto, T., Anjiki, H., Nagasawa, K. et al., Effects of agar and pectin on gastric emptying and post-prandial glycaemic profiles in healthy human volunteers. Clin. Exp. Pharmacol. Physiol. 2007, 34, 11511155.
  • 27
    Schwartz, S. E., Levine, R. A., Weinstock, R. S., Petokas, S. et al., Sustained pectin ingestion–effect on gastric-emptying and glucose-tolerance in non-insulin-dependent diabetic-patients. Am. J. Clin. Nutr. 1988, 48, 14131417.
  • 28
    Nemeth, K., Plumb, G. W., Berrin, J. G., Juge, N. et al., Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr. 2003, 42, 2942.
  • 29
    Berrin, J. G., McLauchlan, W. R., Needs, P., Williamson, G. et al., Functional expression of human liver cytosolic beta-glucosidase in Pichia pastoris. Insights into its role in the metabolism of dietary glucosides. Eur. J. Biochem. 2002, 269, 249258.
  • 30
    Andreasen, M. F., Kroon, P. A., Williamson, G., Garcia-Conesa, M. T., Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals. J. Agric. Food Chem. 2001, 49, 56795684.
  • 31
    Silberberg, M., Morand, C., Manach, C., Scalbert, A. et al., Co-administration of quercetin and catechin in rats alters their absorption but not their metabolism. Life Sci. 2005, 77, 31563167.
  • 32
    Yang, C. S., Chen, L. S., Lee, M. J., Balentine, D. et al., Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol. Biomarkers Prevent. 1998, 7, 351354.
  • 33
    Sesink, A. L., Arts, I. C., de Boer, V. C., Breedveld, P. et al., Breast cancer resistance protein (Bcrp1/Abcg2) limits net intestinal uptake of quercetin in rats by facilitating apical efflux of glucuronides. Mol. Pharmacol. 2005, 67, 19992006.
  • 34
    Bondonno, C. P., Yang, X., Croft, K. D., Considine, M. J. et al., Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial. Free Radic. Biol. Med. 2012, 52, 95102.