5 References

  • 1
    Brown, M. S., Goldstein, J. L., How LDL receptors influence cholesterol and atherosclerosis. Sci. Am. 1984, 251, 5866.
  • 2
    Hansson, G. K., Hermansson, A., The immune system in atherosclerosis. Nat. Immunol. 2011, 12, 204212.
  • 3
    Ross, R., Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 1999, 340, 115126.
  • 4
    Bakkeren, H. F., Kuipers, F., Vonk, R. J., Van Berkel, T. J., Evidence for reverse cholesterol transport in vivo from liver endothelial cells to parenchymal cells and bile by high-density lipoprotein. Biochem. J. 1990, 268, 685691.
  • 5
    Nestel, P. J., Whyte, H. M., Goodman, D. S., Distribution and turnover of cholesterol in humans. J. Clin. Invest. 1969, 48, 982991.
  • 6
    Percy-Robb, I. W., Boyd, G. S., The synthesis of bile acids in perfused rat liver subjected to chronic biliary drainage. Biochem. J. 1970, 118, 519530.
  • 7
    Casaschi, A., Maiyoh, G. K., Rubio, B. K., Li, R. W. et al., The chalcone xanthohumol inhibits triglyceride and apolipoprotein B secretion in HepG2 cells. J. Nutr. 2004, 134, 13401346.
  • 8
    Nozawa, H., Xanthohumol, the chalcone from beer hops (Humulus lupulus L.), is the ligand for farnesoid X receptor and ameliorates lipid and glucose metabolism in KK-A(y) mice. Biochem. Biophys. Res. Commun. 2005, 336, 754761.
  • 9
    Yang, J. Y., Della-Fera, M. A., Rayalam, S., Baile, C. A., Effect of xanthohumol and isoxanthohumol on 3T3-L1 cell apoptosis and adipogenesis. Apoptosis 2007, 12, 19531963.
  • 10
    Legette, L. L., Moreno Luna, A. Y., Reed, R. L., Miranda, C. L. et al., Xanthohumol lowers body weight and fasting plasma glucose in obese male Zucker fa/fa rats. Phytochemistry 2012, DOI: 10.1016/j.phytochem.2012.04.018.
  • 11
    Cho, Y. C., Kim, H. J., Kim, Y. J., Lee, K. Y. et al., Differential anti-inflammatory pathway by xanthohumol in IFN-gamma and LPS-activated macrophages. Int. Immunopharmacol. 2008, 8, 567573.
  • 12
    Cho, Y. C., You, S. K., Kim, H. J., Cho, C. W. et al., Xanthohumol inhibits IL-12 production and reduces chronic allergic contact dermatitis. Int. Immunopharmacol. 2010, 10, 556561.
  • 13
    Lupinacci, E., Meijerink, J., Vincken, J. P., Gabriele, B. et al., Xanthohumol from hop (Humulus lupulus L.) is an efficient inhibitor of monocyte chemoattractant protein-1 and tumor necrosis factor-alpha release in LPS-stimulated RAW 264.7 mouse macrophages and U937 human monocytes. J. Agric. Food Chem. 2009, 57, 72747281.
  • 14
    Plump, A. S., Smith, J. D., Hayek, T., Aalto-Setala, K. et al., Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 1992, 71, 343353.
  • 15
    Chandak, P. G., Obrowsky, S., Radovic, B., Doddapattar, P. et al., Lack of acyl-CoA:diacylglycerol acyltransferase 1 reduces intestinal cholesterol absorption and attenuates atherosclerosis in apolipoprotein E knockout mice. Biochim. Biophys. Acta 2011, 1811, 10111020.
  • 16
    Wakil, S. J., Stoops, J. K., Joshi, V. C., Fatty acid synthesis and its regulation. Annu. Rev. Biochem. 1983, 52, 537579.
  • 17
    Munday, M. R., Campbell, D. G., Carling, D., Hardie, D. G., Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur. J. Biochem. 1988, 175, 331338.
  • 18
    Witters, L. A., Nordlund, A. C., Marshall, L., Regulation of intracellular acetyl-CoA carboxylase by ATP depletors mimics the action of the 5’-AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 1991, 181, 14861492.
  • 19
    Muoio, D. M., Seefeld, K., Witters, L. A., Coleman, R. A., AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem. J. 1999, 338 (Pt 3), 783791.
  • 20
    Winder, W. W., Hardie, D. G., AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am. J. Physiol. 1999, 277, E1E10.
  • 21
    Legette, L., Ma, L., Reed, R. L., Miranda, C. L. et al., Pharmacokinetics of xanthohumol and metabolites in rats after oral and intravenous administration. Mol. Nutr. Food Res. 2012, 56, 466474.
  • 22
    Hanske, L., Loh, G., Sczesny, S., Blaut, M. et al., Recovery and metabolism of xanthohumol in germ-free and human microbiota-associated rats. Mol. Nutr. Food Res. 2010, 54, 14051413.
  • 23
    Boring, L., Gosling, J., Cleary, M., Charo, I. F., Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998, 394, 894897.
  • 24
    Gosling, J., Slaymaker, S., Gu, L., Tseng, S. et al., MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J. Clin. Invest. 1999, 103, 773778.
  • 25
    Hirata, H., Yimin, Segawa, S., Ozaki, M. et al., Xanthohumol prevents atherosclerosis by reducing arterial cholesterol content via CETP and apolipoprotein E in CETP-transgenic mice. PLoS One 2012, 7, 8.
  • 26
    Dorn, C., Massinger, S., Wuzik, A., Heilmann, J. et al., Xanthohumol suppresses inflammatory response to warm ischemia-reperfusion induced liver injury. Exp. Mol. Pathol. 2012, 94, 1016.
  • 27
    Monteiro, R., Calhau, C., Silva, A. O., Pinheiro-Silva, S. et al., Xanthohumol inhibits inflammatory factor production and angiogenesis in breast cancer xenografts. J. Cell. Biochem. 2008, 104, 16991707.
  • 28
    Gao, X., Deeb, D., Liu, Y., Gautam, S. et al., Immunomodulatory activity of xanthohumol: inhibition of T cell proliferation, cell-mediated cytotoxicity and Th1 cytokine production through suppression of NF-kappaB. Immunopharmacol. Immunotoxicol. 2009, 31, 477484.
  • 29
    Decleves, A. E., Mathew, A. V., Cunard, R., Sharma, K., AMPK mediates the initiation of kidney disease induced by a high-fat diet. J. Am. Soc. Nephrol. 2011, 22, 18461855.
  • 30
    Miyokawa-Gorin, K., Takahashi, K., Handa, K., Kitahara, A. et al., Induction of mitochondrial uncoupling enhances VEGF(1)(2)(0) but reduces MCP-1 release in mature 3T3-L1 adipocytes: possible regulatory mechanism through endogenous ER stress and AMPK-related pathways. Biochem. Biophys. Res. Commun. 2012, 419, 200205.
  • 31
    Jeong, H. W., Hsu, K. C., Lee, J. W., Ham, M. et al., Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E955E964.
  • 32
    Ewart, M. A., Kohlhaas, C. F., Salt, I. P., Inhibition of tumor necrosis factor alpha-stimulated monocyte adhesion to human aortic endothelial cells by AMP-activated protein kinase. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 22552257.
  • 33
    Li, Y., Xu, S., Mihaylova, M. M., Zheng, B. et al., AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011, 13, 376388.
  • 34
    Mao, J., DeMayo, F. J., Li, H., Abu-Elheiga, L. et al., Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc. Natl. Acad. Sci. USA 2006, 103, 85528557.
  • 35
    Browning, J. D., Horton, J. D., Molecular mediators of hepatic steatosis and liver injury. J. Clin. Invest. 2004, 114, 147152.
  • 36
    Avula, B., Ganzera, M., Warnick, J. E., Feltenstein, M. W. et al., High-performance liquid chromatographic determination of xanthohumol in rat plasma, urine, and fecal samples. J. Chromatogr. Sci. 2004, 42, 378382.
  • 37
    Vanhoecke, B. W., Delporte, F., Van Braeckel, E., Heyerick, A. et al., A safety study of oral tangeretin and xanthohumol administration to laboratory mice. In Vivo 2005, 19, 103107.
  • 38
    Hussong, R., Frank, N., Knauft, J., Ittrich, C. et al., A safety study of oral xanthohumol administration and its influence on fertility in Sprague Dawley rats. Mol. Nutr. Food Res. 2005, 49, 861867.
  • 39
    Dorn, C., Bataille, F., Gaebele, E., Heilmann, J. et al., Xanthohumol feeding does not impair organ function and homoeostasis in mice. Food Chem. Toxicol. 2010, 48, 18901897.
  • 40
    Sato, R., Goldstein, J. L., Brown, M. S., Replacement of serine-871 of hamster 3-hydroxy-3-methylglutaryl-CoA reductase prevents phosphorylation by AMP-activated kinase and blocks inhibition of sterol synthesis induced by ATP depletion. Proc. Natl. Acad. Sci USA 1993, 90, 92619265.
  • 41
    Clarke, P. R., Hardie, D. G., Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. EMBO J 1990, 9, 24392446.
  • 42
    Namkoong, C., Kim, M. S., Jang, P. G., Han, S. M. et al., Enhanced hypothalamic AMP-activated protein kinase activity contributes to hyperphagia in diabetic rats. Diabetes 2005, 54, 6368.
  • 43
    Albini, A., Dell'Eva, R., Vene, R., Ferrari, N. et al., Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J 2006, 20, 527529.
  • 44
    Dell’Eva, R., Ambrosini, C., Vannini, N., Piaggio, G. et al., AKT/NF-kappaB inhibitor xanthohumol targets cell growth and angiogenesis in hematologic malignancies. Cancer 2007, 110, 20072011.
  • 45
    Yang, J. Y., Della-Fera, M. A., Rayalam, S., Baile, C. A., Enhanced effects of xanthohumol plus honokiol on apoptosis in 3T3-L1 adipocytes. Obesity (Silver Spring) 2008, 16, 12321238.
  • 46
    Deeb, D., Gao, X., Jiang, H., Arbab, A. S. et al., Growth inhibitory and apoptosis-inducing effects of xanthohumol, a prenylated chalone present in hops, in human prostate cancer cells. Anticancer Res. 2010, 30, 33333339.
  • 47
    Hahn-Windgassen, A., Nogueira, V., Chen, C. C., Skeen, J. E. et al., Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J. Biol. Chem. 2005, 280, 3208132089.
  • 48
    Hoekstra, M., Kruijt, J. K., Van Eck, M., Van Berkel, T. J., Specific gene expression of ATP-binding cassette transporters and nuclear hormone receptors in rat liver parenchymal, endothelial, and Kupffer cells. J. Biol. Chem. 2003, 278, 2544825453.
  • 49
    Kennedy, M. A., Barrera, G. C., Nakamura, K., Baldan, A. et al., ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab. 2005, 1, 121131.
  • 50
    Ji, A., Wroblewski, J. M., Cai, L., de Beer, M. C. et al., Nascent HDL formation in hepatocytes and role of ABCA1, ABCG1, and SR-BI. J. Lipid Res. 2012, 53, 446455.