• Open Access

In vitro toxicological characterization of two arsenosugars and their metabolites

Authors


Correspondence: Professor Tanja Schwerdtle, University of Münster, Corrensstraße 45, 48149 Münster, Germany

E-mail: Tanja.Schwerdtle@uni-muenster.de

Fax: +49-251-83-33396

Abstract

Scope

In their recently published Scientific Opinion on Arsenic in Food, the European Food Safety Authority concluded that a risk assessment for arsenosugars is currently not possible, largely because of the lack of relevant toxicological data. To address this issue, we carried out a toxicological in vitro characterization of two arsenosugars and six arsenosugar metabolites.

Methods and results

The highly pure synthesized arsenosugars, DMAV-sugar-glycerol and DMAV-sugar-sulfate, investigated in this study, as well as four metabolites, oxo-dimethylarsenoacetic acid (oxo-DMAAV), oxo-dimethylarsenoethanol (oxo-DMAEV), thio-DMAAV and thio-DMAEV, exerted neither cytotoxicity nor genotoxicity up to 500 μM exposure in cultured human bladder cells. However, two arsenosugar metabolites, namely dimethyl-arsinic acid (DMAV) and thio-dimethylarsinic acid (thio-DMAV), were toxic to the cells; thio-DMAV was even slightly more cytotoxic than arsenite. Additionally, intestinal bioavailability of the arsenosugars was assessed applying the Caco-2 intestinal barrier model. The observed low, but significant transfer rates of the arsenosugars across the barrier model provide further evidence that arsenosugars are intestinally bioavailable.

Conclusion

In a cellular system that metabolizes arsenosugars, cellular toxicity likely arises. Thus, in strong contrast to arsenobetaine, arsenosugars cannot be categorized as nontoxic for humans and a risk to human health cannot be excluded.

Ancillary