SEARCH

SEARCH BY CITATION

6 References

  • 1
    Metchnikoff, E., in: Heinemann, W. (Ed.), The Prolongation of Life: Optimistic Studies, Springer Publishing Company, London 1907, pp. 61183.
  • 2
    Tissier, H., Traitement des infections intestinales par la méthode de la flore bactérienne de l'intestin. CR. Soc. Biol. 1906, 60, 359361.
  • 3
    Lilly, D. M., Stillwell, R. H., Probiotics: growth promoting factors produced by microorganisms. Science 1965, 147, 747748.
  • 4
    Fuller, R., Probiotics in man and animals. J. Appl. Bacteriol. 1989, 66, 365378.
  • 5
    Havenaar, R., Huis in't Veld, J. H. J., in: Wood, B. J. B. (Ed.), The Lactic Acid Bacteria, Vol. 1: The Lactic Acid Bacteria in Health and Disease, Chapman & Hall, New York, NY 1992, pp. 209224.
  • 6
    Guarner, F., Schaafsma, G. J., Probiotics. Int. J. Food Microbiol. 1998, 39, 237238.
  • 7
    FAO-WHO. Food and Agriculture Organization – World Health Organization. Report on Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. 2001. Available from: ftp://ftp.fao.org/docrep/fao/meeting/009/y6398e.pdf
  • 8
    ILSI – The International Life Sciences Institute. Concepts of functional foods. 2002.
  • 9
    EFFCA – European Food and Feed Cultures Association. Definition of microbial food culture (MFC), 2003. Available from: http://effca.drupalgardens.com/sites/effca.drupalgardens.com/files/Definition-of-Microbial-Food-Culture-MFC-2012_0.pdf
  • 10
    FAO/WHO. Food and Agriculture Organization – World Health Organization. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. 2002. Available from: ftp://ftp.fao.org/es/esn/food/wgreport2.pdf
  • 11
    FAO/WHO. Food and Agriculture Organization – World Health Organization. Probiotics in food: health and nutritional properties and guidelines for evaluation. Food and Nutrition Paper 85. 2006. Available from: ftp://ftp.fao.org/docrep/fao/009/a0512e/a0512e00.pdf
  • 12
    EU – European Union. Regulation (EC) No. 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. OJ L 404, 30.12.2006, pp. 925. Available from: http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:012:0003:0018:EN:PDF
  • 13
    EFSA – European Food Safety Authority on Dietetic Products, Nutrition and Allergies (NDA). Guidance on the scientific requirements of European Food Safety Authority or health claims related to gut and immune function. EFSA J. 2011, 9, 1984. doi:10.2903/j.efsa.2011.1984.
  • 14
    Holzapfel, W. H., Haberer, P., Snel, J., Schillinger, U. et  al., Overview of gut flora and probiotics. Int. J. Food. Microbiol. 1998, 41, 85101.
  • 15
    Holzapfel, W. H., Haberer, P., Geisen, R., Bjorkroth, J. et  al., Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr. 2001, 73, 365S373S.
  • 16
    Klein, G., Pack, A., Bonaparte, C., Reuter, G., Taxonomy and physiology of probiotic lactic acid bacteria. Int. J. Food Microbiol. 1998, 41, 325.
  • 17
    Sanders, M. E., Morelli, L., Tompkins, T. A., Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Comp. Rev. Food Sci. Food Safety 2003, 2, 101110.
  • 18
    Czerucka, D., Piche, T., Rampal, P. Review article: yeast as probiotics – Saccharomyces boulardii. Alim. Pharmacol. Ther. 2007, 26, 767778.
  • 19
    Foligne, B., Dewulf, J., Vandekerckove, P., Pignede, G. et  al., Probiotic yeasts: anti-inflammatory potential of various non-pathogenic strains in experimental colitis in mice. World J. Gastroenterol. 2010, 16(17), 21342145.
  • 20
    Guarner, F., Perdigon, G., Corthier, G., Salminen, S. et  al., Should yoghurt cultures be considered probiotic? Br. J. Nutr. 2005, 93, 783786.
  • 21
    Huys, G., Vancanneyt, M., D'Haene, K., Vankerckhoven, V. et  al., Accuracy of species identity of commercial bacterial cultures intended for probiotic or nutritional use. Res. Microbiol. 2006, 157, 803810.
  • 22
    Duc, le H., Hong, H. A., Barbosa, T. M., Henriques, A. O. et  al., Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 2004, 70, 21612171.
  • 23
    Masco, L., Huys, G., De Brandt, E., Temmerman, R. et  al., Culture-dependent and culture-independent qualitative analysis of probiotic products claimed to contain bifidobacteria. Int. J. Food Microbiol. 2005, 102, 221230.
  • 24
    Temmerman, R., Scheirlinck, I., Huys, G., Swings, J., Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 2003, 69, 220226.
  • 25
    Vankerckhoven, V., Huys, G., Vancanneyt, M., Vael, C. et  al., Biosafety assessment of probiotics used for human consumption: recommendations from the EU-PROSAFE project. Trends Food Sci. Technol. 2008, 19, 102114.
  • 26
    Ward, P., Roy, D., Review of molecular methods for identification, characterization and detection of bifidobacteria. Lait 2005, 85, 2332.
  • 27
    Yeung, P. S., Sanders, M. E., Kitts, C. L., Cano, R. et  al., Species-specific identification of commercial probiotic strains. J. Dairy Sci. 2002, 85, 10391051.
  • 28
    Ben-Amor, K., Vaughan, E. E., de Vos, W. M., Advanced molecular tools for the identification of lactic acid bacteria. J. Nutr. 2007, 137, 741S747S.
  • 29
    Torriani, S., Clementi, F., Vancanneyt, M., Hoste, B. et  al., Differentiation of Lactobacillus plantarum, L. pentosus and L. paraplantarum species by RAPD-PCR and AFLP. Syst. Appl. Microbiol. 2001, 24, 554560.
  • 30
    Naser, S. M., Thompson, F.L, Hoste, B., Gevers, D. et  al., Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiol. 2005, 151, 21412150.
  • 31
    Naser, S. M., Dawyndt, P., Hoste, B., Gevers, D. et  al., Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int. J. Syst. Evol. Microbiol. 2007, 57, 27772789.
  • 32
    De Bruyne, K., Schillinger, U., Caroline, L., Boehringer, B. et  al., Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int. J. Syst. Evol. Microbiol. 2007, 57, 29522959.
  • 33
    De Bruyne, K., Franz, C. M., Vancanneyt, M., Schillinger, U. et  al. Pediococcus argentinicus sp. nov. from Argentinean fermented wheat flour and identification of Pediococcus species by pheS, rpoA and atpA sequence analysis. Int. J. Syst. Evol. Microbiol. 2008, 58, 29092916.
  • 34
    Zhu, L., Li, W., Dong, X., Species identification of genus Bifidobacterium based on partial HSP60 gene sequences and proposal of Bifidobacterium thermacidophilum subsp. porcinum subsp. nov. Int. J. Syst. Evol. Microbiol. 2003, 53, 16191623.
  • 35
    Kim, B. J., Kim, H. Y., Yun, Y. J., Kook, Y. H., Differentiation of Bifidobacterium species using partial RNA polymerase {beta}-subunit (rpoB) gene sequences. Int. J. Syst. Evol. Microbiol. 2010, 60, 26972704.
  • 36
    Ventura, M., Canchaya, C., Del Casale, A., Dellaglio, F. et  al., Analysis of bifidobacterial evolution using a multilocus approach. Int. J. Syst. Evol. Microbiol. 2006, 27, 8392.
  • 37
    Wang, L. T., Lee, F. L., Tai, C. J., Kasai, H., Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int. J. Syst. Evol. Microbiol. 2007, 57, 18461850.
  • 38
    Palmisano, M. M., Nakamura, L. K., Duncan, K. E., Istock, C. A. et  al., Bacillus sonorensis sp. nov., a close relative of Bacillus licheniformis, isolated from soil in the Sonoran Desert, Arizona. Int. J. Syst. Evol. Microbiol. 2001, 5, 16711679.
  • 39
    Konstantinidis, K., Tiedje, J. M., Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. USA 2005, 102, 25672572.
  • 40
    Rosselló-Mora, R., Updating prokaryotic taxonomy. J. Bacteriol. 2005, 187, 62556257.
  • 41
    Sauer, S., Kliem, M. Mass spectrometry tools for the classification and identification of bacteria. Nature Rev. Microbiol. 2010, 8, 7482.
  • 42
    Tanigawa, K., Kawabata, H., Watanabe, K., Identification and typing of Lactococcus lactis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 2010, 76, 40554062.
  • 43
    De Bruyne, K., Slabbinck, B., Waegeman, W., Vauterin, P. et  al., Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Syst. Appl. Microbiol. 2011, 34, 2029.
  • 44
    Doan, N. T. L., Van Hoorde, K., Cnockaert, M., De Brandt, E. et  al., Validation of MALDI-TOF MS for rapid classification and identification of lactic acid bacteria, with a focus on isolates from traditional fermented foods in Northern Vietnam. Lett. Appl. Microbiol. 2012, 55, 265273.
  • 45
    Sato, H., Torimura, M., Kitahara, M., Ohkuma, M. et  al., Characterization of the Lactobacillus casei group based on the profiling of ribosomal proteins coded in S10-spc-alpha operons as observed by MALDI-TOF MS. Syst. Appl. Microbiol. 2012, 35, 447454.
  • 46
    Angelakis, E., Million, M., Henry, M., Raoult, D., Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry. J. Food Sci. 2011, 76, M568M572.
  • 47
    Fell, J. W., Boekhout, T., Fonseca, A., Scorzetti, G. et  al., Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int. J. Syst. Evol. Microbiol. 2000, 50, 13511371.
  • 48
    Lieckfeldt, E., Meyer, W., Börner, T., Rapid identification and differentiation of yeasts by DNA and PCR fingerprinting. J. Basic Microbiol. 1993, 33, 413426.
  • 49
    Scorzetti, G., Fell, J. W., Fonseca, A., Statzell-Tallman, A., Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res. 2002, 2, 495517.
  • 50
    Daniel, H. M., Meyer, W., Evaluation of ribosomal RNA and actin gene sequences for the identification of ascomycetous yeasts. Int. J. Food. Microbiol. 2003, 86, 6178.
  • 51
    Gonzalez, S. S., Barrio, E., Gafner, J., Querol, A., Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations. FEMS Yeast Res. 2006, 6, 12211234.
  • 52
    Manan, N. A., Chin Chin, S., Abdullah, N., Wan, H. Y., Differentiation of Lactobacillus-probiotic strains by visual comparison of random amplified polymorphic DNA (RAPD) profiles. Afr. J. Biotechnol. 2009, 8, 39643969.
  • 53
    Ratna Sudha, M., Chauhan, P., Dixit, K., Babu, S. et  al., Molecular typing and probiotic attributes of a new strain of Bacillus coagulans – Unique IS-2: a potential biotherapeutic agent. Gen. Engin. Biotechnol. J. 2010, GEBJ-7.
  • 54
    Roy, D., Ward, P., Champagne, G., Differentiation of bifidobacteria by use of pulsed-field gel electrophoresis and polymerase chain reaction. Int. J. Food Microbiol. 1996, 29, 1129.
  • 55
    Grand, M., Küffer, M., Baumgartner, A., Quantitative analysis and molecular identification of bifidobacteria strains in probiotic milk products. Eur. Food Res. Technol. 2003, 217, 9092.
  • 56
    Coudeyras, S., Marchandin, H., Fajon, C., Forestier, C., Taxonomic and strain-specific identification of the probiotic strain Lactobacillus rhamnosus 35 within the Lactobacillus casei group. Appl. Environ. Microbiol. 2008, 74, 26792689.
  • 57
    Vancanneyt, M., Huys, G., Lefebvre, K., Vankerckhoven, V. et  al., Intraspecific genotypic characterization of Lactobacillus rhamnosus strains intended for probiotic use and isolates of human origin. Syst. Appl. Microbiol. 2006, 2, 53765383.
  • 58
    Wind, R. D., Tolboom, H., Klare, I., Huys, G. et  al., Tolerance and safety of the potentially probiotic strain Lactobacillus rhamnosus PRSF-L477: a randomized, double-blind placebo-controlled trial in healthy volunteers. Br. J. Nutr. 2010, 104, 18061816.
  • 59
    De Baets, L., Van Iwaarden, P., Meeus, N., Schimmel, H. et  al., First certified reference materials for molecular fingerprinting of two approved probiotic Bacillus strains. Int. J. Food Microbiol. 2009, 129, 1620.
  • 60
    Achtman, M., Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Ann. Rev. Microbiol. 2008, 62, 5370.
  • 61
    Homan, W. L., Tribe, D., Poznanski, S., Li, M et  al., Multilocus sequence typing scheme for Enterococcus faecium. J. Clin. Microbiol. 2002, 40, 19631971.
  • 62
    Helgason, E., Tourasse, N. J., Meisal, R., Caugant, D. A. et  al., Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl. Environ. Microbiol. 2004, 70, 191201.
  • 63
    Cai, H., Rodriguez, B. T., Zhang, W., Broadbent, J. R. et  al., Genotypic and phenotypic characterization of Lactobacillus casei strains isolated from different ecological niches suggests frequent recombination and niche specificity. Microbiology 2007, 153, 26552665.
  • 64
    Diancourt, L., Passet, V., Chervaux, C., Garault, P. et  al., Multilocus sequence typing of Lactobacillus casei reveals a clonal population structure with low levels of homologous recombination. Appl. Environ. Microbiol. 2007, 73, 66016611.
  • 65
    de las Rivas, B., Marcobal, A., Muñoz, R., Development of a multilocus sequence typing method for analysis of Lactobacillus plantarum strains. Microbiology 2006, 152, 8593.
  • 66
    Raftis, E. J., Salvetti, E., Torriani, S., Felis, G. E. et  al. Genomic diversity of Lactobacillus salivarius. Appl. Environ. Microbiol. 2011, 77, 954965.
  • 67
    Delétoile, A., Passet, V., Aires, J., Chambaud, I. et  al., Species delineation and clonal diversity in four Bifidobacterium species as revealed by multilocus sequencing. Res. Microbiol. 2010, 161, 8290.
  • 68
    Mitterdorfer, G., Mayer, H. K., Kneifel, W, Viernstein, H., Clustering of Saccharomyces boulardii strains within the species S. cerevisiae using molecular typing techniques. J. Appl. Microbiol. 2002, 93, 521530.
  • 69
    Baleiras Couto, M. M., Eijsma, B., Hofstra, H., Huis in't Veld J. H. et  al., Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains. Appl. Environ. Microbiol. 1996, 62, 4146.
  • 70
    Posteraro, B., Sanguinetti, M., Romano, L., Torelli, R. et  al., Molecular tools for differentiating probiotic and clinical strains of Saccharomyces cerevisiae. Int. J. Food Microbiol. 2005, 103, 295304.
  • 71
    Muñoz, R., Gomez, A., Robles, V., Rodriguez, P. et  al., Multilocus sequence typing of oenological Saccharomyces cerevisiae strains. Food Microbiol. 2009, 26, 841846.
  • 72
    Leroy, F., De Vuyst, L., Functional lactic acid bacteria starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 6778.
  • 73
    Foulquié Moreno, M. R., Sarantinopoulos, P., Tsakalidou, E., De Vuyst, L., The role and application of enterococci in food and health. Int. J. Food Microbiol. 2006, 106, 124.
  • 74
    Wessels, S., Axelsson, L., Hansen, E. B., De Vuyst, L. et  al., The lactic acid bacteria, the food chain, and their regulation. Trends Food Sci. Technol. 2004, 15, 498505.
  • 75
    Ouwehand, A. C., Vesterlund, S., Health aspects of probiotics. IDrugs 2003, 6, 573580.
  • 76
    Cannon, J. P., Lee, T. A., Bolanos, J. T., Danziger, L. H., Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 3140.
  • 77
    Hata, D., Yoshida, A., Ohkubo, H., Mochizuki, Y. et  al., Meningitis caused by Bifidobacterium in an infant. Pediatr. Infect. Dis. J. 1988, 7, 669671.
  • 78
    Wang, X., Andersson, R., Soltesz, V., Leveau, P. et  al., Gut origin sepsis, macrophage function, and oxygen extraction associated with acute pancreatitis in the rat. World J. Surg. 1996, 20, 299307
  • 79
    MacFie, J., O'Boyle, C., Mitchell, C. J., Buckley, P. M. et  al., Gut origin of sepsis, a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut 1999, 45, 223228.
  • 80
    Gronbach, K., Eberle, U., Muller, M., Olschlager, T. A. et  al., Safety of probiotic Escherichia coli strain Nissle 1917 depends on intestinal microbiota and adaptive immunity of the host. Infect. Immun. 2010, 78, 30363046.
  • 81
    Sanders, M. E., Akkermans, L. M. A., Haller, D., Hammerman, C. et  al., Safety assessment of probiotics for human use. Gut Microb. 2010, 1, 122.
  • 82
    Salminen, S., Von Wright, A., Morell, L., Marteau, P. et  al., Demonstration of safety of probiotics–a review. Int. J. Food Microbiol. 1998, 44, 93106.
  • 83
    Threlfall, E., Ward, L., Frost, J., Willshaw, G., The emergence and spread of antibiotic resistance in food-borne bacteria. Int. J. Food Microbiol. 2000, 62, 15.
  • 84
    Charteris, W. P., Kelly, P. M., Morelli, L., Collins, J. K., Antibiotic susceptibility of potentially probiotic Lactobacillus species. J. Food Prot. 1998, 61, 16361643.
  • 85
    Charteris, W. P., Kelly, P. M., Morelli, L., Collins, J. K., Antibiotic susceptibility of potentially probiotic Bifidobacterium isolates from the human gastrointestinal tract. Lett. Appl. Microbiol. 1998, 26, 333337.
  • 86
    Teuber, M., Meile, L., Schwarz, F., Acquired antibiotic resistance in lactic acid bacteria from food. Antonie van Leeuwenhoek 1999, 76, 115137.
  • 87
    Gevers, D., Huys, G., Swings, J., In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. FEMS Microbiol. Lett. 2003, 225, 125130.
  • 88
    Jacobsen, L., Wilcks, A., Hammer, K., Huys, G. et  al., Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2–2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiol. Ecol. 2007, 59, 158166.
  • 89
    EFSA – European Food Safety Authority. Updating of the criteria used in the assessment of bacteria for resistance to antibiotics of human or veterinary importance. Question No. EFSA-Q-2004–079. EFSA J. 2005, 223, 112.
  • 90
    Salminen, S., von Wright, A. J., Ouwehand, A. C., Holzapfel, W. H., in: Adams, M. R., Nout, M. J. R. (Eds.), Fermentation and Food Safety, 1st ed. Aspen, Gaithersburg, MD 2001, pp. 239251.
  • 91
    Klare, I., Konstabel, C., Muller-Bertling, S., Reissbrodt, R. et  al., Evaluation of new broth media for microdilution antibiotic susceptibility testing of lactobacilli, pediococci, lactococci, and bifidobacteria. Appl. Environ. Microbiol. 2005, 71, 89828986.
  • 92
    Huys, G., D'Haene, K., Cnockaert, M., Tosi, L. et  al., Intra- and interlaboratory performances of two commercial antimicrobial susceptibility testing methods for bifidobacteria and nonenterococcal lactic acid bacteria. Antimicrob. Agents Chemother. 2010, 54, 25672574.
  • 93
    Korhonen, J. M., Danielsen, M., Mayo, B., Egervärn, M. et  al., Antimicrobial susceptibility and proposed microbiological cut-off values of lactobacilli by phenotypic determination. Int. J. Prob. Preb. 2008, 3, 257268.
  • 94
    Mättö, J., Van Hoek, A. H. A. M., Domig, K. J., Saarela, M. et  al., Susceptibility of human and probiotic Bifidobacterium spp. to selected antibiotics as determined by the Etest method. Int. Dairy. J. 2007, 17, 11231131.
  • 95
    Klare, I., Konstabel, C., Werner, G., Huys, G. et  al., Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J. Antimicrob. Chemother. 2007, 59, 900912.
  • 96
    Masco, L., Van Hoorde, K., De Brandt, E., Swings, J. et  al., Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products. J. Antimicrob. Chemother. 2006, 58, 8594.
  • 97
    Kastner, S., Perreten, V., Bleuler, H., Hugenschmidt, G. et  al., Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food. Syst. Appl. Microbiol. 2006, 29, 145155.
  • 98
    van Hoek, A. H. A. M., Margolles, A., Domig, K. J., Korhonen, J. M. et  al., Molecular assessment of erythromycin and tetracycline resistance genes in lactic acid bacteria and bifidobacteria and their relation to the phenotypic resistance. Int. J. Prob. Preb. 2008, 3, 271280.
  • 99
    Huys, G., D'Haene, K., Swings, J., Genetic basis of tetracycline and minocycline resistance in the potentially probiotic Lactobacillus plantarum strain CCUG 43738. Antimicrob. Agents Chemother. 2006, 50, 15501551.
  • 100
    Lampkowska, J., Feld L., Monaghan, A., Toomey, N. et  al., A standardized conjugation protocol to asses antibiotic resistance transfer between lactococcal species. Int. J. Food Microbiol. 2008, 127, 172175.
  • 101
    Hütt, P., Koll, P., Stsepetova, J., Alvarez, B. et  al., Safety and persistence of orally administered human Lactobacillus sp. strains in healthy adults. Benef. Microb. 2011, 2, 7990.
  • 102
    Gueimonde, M., Ouwehand, A. C., Salminen, S., Safety of probiotics. Scan. J. of Nutrition. 2004, 48, 4248.
  • 103
    Bernardeau, M., Guguen, M., Vernoux, J. P., Beneficial lactobacilli in food and feed: long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol. Rev. 2006, 30, 487513.
  • 104
    Saxelin, M., Lactobacillus GG – a human probiotic strain with thorough clinical documentation. Food Rev. Int. 1997, 13, 293313.
  • 105
    Rautio, M., Jousimies-Somer, H., Kauma, H., Pietarinen, I. et  al., Liver abscess due to a Lactobacillus rhamnosus strain indistinguishable from L. rhamnosus strain GG. Clin. Infect. Dis. 1999, 28, 11591160.
  • 106
    Cukovic-Cavka, S., Likic, R., Francetic, I., Rustemovic, N. et  al., Lactobacillus acidophilus as a cause of liver abscess in a NOD2/CARD15-positive patient with Crohn's disease. Digestion 2006, 73, 107110.
  • 107
    Chan, J. F., Lau, S. K., Woo, P. C., Fan, R. Y. et  al., Lactobacillus rhamnosus hepatic abscess associated with Mirizzi syndrome: a case report and review of the literature. Diagn. Microbiol. Infect. Dis. 2010, 66, 9497.
  • 108
    Doi, A., Nakajo, K., Kamiya, T., Ohkusu, K., Splenic abscess caused by Lactobacillus paracasei. J. Infect. Chemother. 2011, 17, 122125.
  • 109
    Whelan, K., Myers, C. E., Safety of probiotics in patients receiving nutritional support: a systematic review of case reports, randomized controlled trials, and nonrandomized trials. Am. J. Clin. Nutr. 2010, 91, 687703.
  • 110
    Saxelin, M., Chuang, N. H., Chassy, B., Rautelin, H. et  al., Lactobacilli and bacteremia in southern Finland, 1989–1992. Clin. Infect. Dis. 1996, 22, 564566.
  • 111
    Mackay, A. D., Taylor, M. B., Kibbler, C. C., Hamilton-Miller, J. M., Lactobacillus endocarditis caused by a probiotic organism. Clin. Microbiol. Infect. 1999, 5, 290292.
  • 112
    Lau, S. K., Woo, P. C., Fung, A. M., Chan, K. M., Anaerobic, non-sporulating, Gram-positive bacilli bacteraemia characterized by 16S rRNA gene sequencing. J. Med. Microbiol. 2004, 53, 12471253.
  • 113
    Franz, C. M. A. P., Huch, M., Abriouel, H., Holzapfel, W. et  al., Enterococci as probiotics and their implications in food safety. Int. J. Food Microbiol. 2011, 151, 125140.
  • 114
    Choi, C. H., Prophylactic effect of Lactobacillus GG in animal colitis and its effect on cytokine secretion and mucin gene expressions. Kor. J. Gastroenterol. 2004, 44, 5052.
  • 115
    Johnson, A. P., The pathogenicity of enterococci. J. Antimicrob. Chemother. 1994, 33, 10831089.
  • 116
    Vankerckhoven, V., Huys, G., Vancanneyt, M., Snauwaert, C. et  al., Genotypic diversity, antimicrobial resistance, and virulence factors of human isolates and probiotic cultures constituting two intraspecific groups of Enterococcus faecium isolates. Appl. Environ. Microbiol. 2008, 74, 42474255.
  • 117
    Gomez, J. A. L., Hendrickx, A. P. A., Willems, R. J., Top, J. et  al., Intra- and interspecies genomic transfer of the Enterococcus faecalis pathogenicity island. PLOS One 2011, 6, e16720.
  • 118
    Vancanneyt, M., Lombardi, A., Andrighetoo, C., Knijff, E. et  al., Intra-species genomic groups in Enterococcus faecium and their correlation with origin and pathogenicity. Appl. Environ. Microbiol. 2002, 68, 13511359.
  • 119
    Hammad, A. M., Shimamoto, T., Towards a compatible probiotic-antibiotic combination therapy: assessment of antimicrobial resistance in the Japanese probiotics. J. Appl. Microbiol. 2010, 109, 13491360.
  • 120
    Hong, K. S., Kang, H. W., Im, J. P., Ji, G. E. et  al., Effect of probiotics on symptoms in Korean adults with irritable bowel syndrome. Gut Liver 2009, 3, 101107.
  • 121
    Wehrle, E., Moravek, M., Dietrich, R., Bürk, C., Comparison of multiplex PCR, enzyme immunoassay and cell culture methods for the detection of enterotoxinogenic Bacillus cereus. J. Microbiol. Meth. 2009, 78, 265270.
  • 122
    De Jonghe, V., Coorevits, A., De Block, J., Van Coillie, E. et  al., Toxinogenic and spoilage potential of aerobic spore-formers isolated from raw milk. Int. J. Food. Microbiol. 2010, 136, 318325.
  • 123
    Kruis, W., Fric, P., Pokrotnieks, J., Lukas, M. et  al., Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 2004, 53, 16171623.
  • 124
    Guenther, K. E., Straube, E., Pfister, W., Guenther, A. et  al., Severe sepsis after probiotic treatment with Escherichia coli NISSLE 1917. Pediatr. Infect. Dis. J. 2010, 29, 188189.
  • 125
    Nataro, J. P., Kaper, J. B., Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142201.
  • 126
    Antikainen, J., Tarkka, E., Haukka, K., Siitonen, A. et  al., New 16-plex PCR method for rapid detection of diarrheagenic Escherichia coli directly from stool samples. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 899908.
  • 127
    Meile, L., Le Blay, G., Thierry, A., Safety assessment of dairy microorganisms: Propionibacterium and Bifidobacterium. Int. J. Food Microbiol. 2008, 126, 316320.
  • 128
    Enache-Angoulvant, A., Hennequin, C., Invasive Saccharomyces infection: a comprehensive review. Clin. Infect. Dis. 2005, 41, 15591568.
  • 129
    Venugopalan, V., Shriner, K. A., Wong-Beringer, A., Regulatory oversight and safety of probiotic use. Emerg. Infect. Dis. 2010, 16, 16611665.
  • 130
    Jacobi, C. A., Schulz, C., Malfertheiner, P., Treating critically ill patients with probiotics: beneficial or dangerous? Gut Pathog. 2011, 3, 2.
  • 131
    Besselink, M. G, van Santvoort, H. C., Buskens, E., Boermeester, M. A. et  al., Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet 2008, 371, 651659.
  • 132
    Bjarnason, A., Adler, S. N., Bjarnason, I., Probiotic prophylaxis in predicted severe acute pancreatitis. Lancet 2008, 372, 114115.
  • 133
    Domann, E., Hain, T., Ghai, R., Billion, A. et  al., Comparative genomic analysis for the presence of potential enterococcal virulence factors in the probiotic Enterococcus faecalis strain Symbioflor 1. Int. J. Med. Microbiol. 2007, 297, 533539.
  • 134
    Grozdanov, L., Raasch, C., Schulze, J., Sonnenborn, U. et  al., Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J. Bacteriol. 2004, 186, 54325441.
  • 135
    Vejborg, R. M., Friis, C., Hancock, V., Schembri, M. A. et  al., Virulent parent with probiotic progeny: comparative genomics of Escherichia coli strains CFT073, Nissle 1917 and ABU 83972. Mol. Gen. Genom. 2010, 283, 469484.
  • 136
    Drasar, B. S., Hill, M. J., Human Intestinal Flora. Academic Press, London 1974, pp. 72102.
  • 137
    Araya-Kojima, T., Yaeshima, T., Ishibashi, N., Shimamura, S. et  al., Inhibitory effects of Bifidobacterium longum BB536 on harmful intestinal bacteria. Bifidobact. Microfl. 1995, 14, 5966.
  • 138
    Araya-Kojima, T., Yaeshima, T., Ishibashi, N., Shimamura, S. et  al., Inhibitory effects of human-derived Bifidobacterium on pathogenic Escherichia coli serotype O-111. Biosci. Microflora 1996, 15, 1722.
  • 139
    Cheah, P. Y., Hypotheses for the etiology of colorectal cancer — an overview. Nutr. Cancer 1990, 14, 513.
  • 140
    Midtvedt, T., Norman, A., Bile acid transformation by microbial strains belonging to genera found in intestinal contents. Acta. Pathol. Microbiol. Scand. 1967, 7, 629638.
  • 141
    Takahashi, T., Morotomi, M., Absence of cholic acid 7-dehydroxylase activity in the strains of Lactobacillus and Bifidobacterium. J. Dairy. Sci. 1994, 77, 32753286.
  • 142
    Ferrari, A., Pacini, N., Canzi, E., A note on bile acid transformations by strains of Bifidobacterium. J. Appl. Bacteriol. 1980, 49, 193197.
  • 143
    Jett, B. D., Huycke, M. M., Gilmore, M. S., Virulence of enterococci. Clin. Microbiol. Rev. 1994, 7, 462478.
  • 144
    Douglas, C. W., Brown, P. R., Preston, F. E., Platelet aggregation by oral streptococci. FEMS Microbiol. Lett. 1990, 72, 6368.
  • 145
    Harty, D. W. S., Patrikakis, M., Hume, E. B. H., Oakey, H. J. et  al., The aggregation of human platelets by Lactobacillus species. J. Gen. Appl. Microbiol. 1993, 139, 29452951.
  • 146
    Harty, D. W. S., Patrikakis, M., Knox, K. W., Identification of Lactobacillus strains isolated with infective endocarditis and comparison of their surface-associated properties with those of other strains of the same species. Microbiol. Ecol. Health. Dis. 1993, 6, 191201.
  • 147
    Oakey, H. J., Harty, D. W. S., Knox, K. W., Enzyme production by lactobacilli and the potential link with infective endocarditis. J. Appl. Bacteriol. 1995, 78, 142148.
  • 148
    Ruseler-Van Embden, G. H., Van Lieshout, L. M. C., Gosselink, M. J., Marteau, P., Inability of Lactobacillus casei strain GG, L. acidophilus, and Bifidobacterium bifidum to degrade intestinal mucus glycoproteins. Scand. J. Gastroenterol. 1995, 30, 675680.
  • 149
    Berg, R. D., in: Fuller, R., (ed.), Probiotics, The Scientific Basis. Chapman & Hall, London 1992, pp. 5585.
  • 150
    Dietch, E. A., Hempa, A. C., Specian, R. D., Bery, R. D., A study of the relationships among survival gut origin, sepsis and bacterial translocation in a model of systemic inflammation. J. Trauma 1992, 32, 141147.
  • 151
    Steinberg, S. M., Bacterial translocation: what it is and what it is not. Am. J. Surg. 2003, 186, 301305.
  • 152
    Salminen, S., Marteau, P., Safety of probiotic lactic acid bacteria and other probiotics. Lactic 97 (Proceedings). Adria Normandie Caen, 1997, 7172.
  • 153
    Adams, M. R., Marteau, P., On the safety of lactic acid bacteria from food. Int. J. Food Microbiol. 1995, 27, 263264.
  • 154
    Donohue, D. C., Salminen S., Safety of probiotic bacteria. Asia. Pac. J. Clin. Nutr. 1996, 5, 2528.
  • 155
    Klein, V. G., Bonaparte, C., Reuter, G., Lactobazillen als Starterkulturen für die Milchwirtschaft unter dem Gesichtspunkt der Sicheren Biotechnologie. (Lactobacilli as starter cultures for the dairy industry with respect to safe biotechnology.). Milchwissenschaft 1992, 47, 632636.
  • 156
    Ishibashi, N., Yamazaki, S., Probiotics and safety. Am. J. Clin. Nutr. 2001, 73, 465S470S.
  • 157
    Sedman, P. C., Macfie, J., Sager, P., Mitchell, C. et  al., The prevalence of gut translocation in humans. Gastroenterology 1994, 107, 643649.
  • 158
    Wells, C. L., Barton, R. G., Wavatne, S., Dunn, D. L. et  al., Intestinal bacterial flora, intestinal pathology, and lipopolysaccharide-induced translocation of intestinal bacteria. Circ. Shock 1992, 37, 117123.
  • 159
    Berg, R. D., Wommack, E., Deitch, E. A., Immunosuppression and intestinal bacterial overgrowth synergistically promote bacterial translocation. Arch. Surg. 1988, 123, 13591364.
  • 160
    Deitch, E. A., Maejima, K., Berg, R. D., Effect of oral antibiotics and bacterial overgrowth on the translocation of the GI tract microflora in burned rats. J. Trauma 1985, 25, 385392.
  • 161
    Berg, R. D., Inhibition of Escherichia coli translocation from the gastrointestinal tract by normal cecal flora in gnotobiotic or antibiotic-decontaminated mice. Infect. Immun. 1980, 29, 10731081.
  • 162
    Daniel, C., Poiret, S., Goudercourt, D., Dennin, V. et  al., Selecting lactic acid bacteria for their safety and functionality by use of a mouse colitis model. Appl. Environ. Microbiol. 2006, 72, 57995805.
  • 163
    Berg, R. D., Bacterial translocation from the gastrointestinal tract. Adv. Exp. Med. Biol. 1999, 473, 1130.
  • 164
    Berg, R. D., Bacterial translocation from the gastrointestinal tracts of mice receiving immunosuppressive chemotherapeutic agents. Curr. Microbiol. 1983, 8, 285292.
  • 165
    Berg, R. D., Garlington, A. W., Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect. Immun. 1979, 23, 403411.
  • 166
    Maejima, K., Tajima, Y., Association of gnotobiotic mice with various organisms isolated from conventional mice. Jpn. J. Exp. Med. 1973, 43, 289296.
  • 167
    Deitch, E. A., Xu, D., Lu, Q., Berg, R. D., Bacterial translocation from the gut impairs systemic immunity. Surgery 1991, 109, 269276.
  • 168
    Foo, M. C., Lee, A., Immunological response of mice to members of the autochthonous intestinal microflora. Infect. Immun. 1972, 6, 525532.
  • 169
    Daniel, C., Roussel, Y., Kleerebezem, M., Pot, B. Recombinant lactic acid bacteria as mucosal biotherapeutic agents. Trends Biotechnol. 2011, 29, 499508.
  • 170
    Culligan, E. P., Hill, C., Sleator, R. D., Probiotics and gastrointestinal disease: successes, problems and future prospects. Gut Pathogens 2009, 1, 19. doi:10.1186/1757-4749-1-19.
  • 171
    Kimman, T. G., Smit, E., Klein, M. R., Evidence-based biosafety: a review of the principles and effectiveness of microbiological containment measures. Clin. Microbiol. Rev. 2008, 21, 403425.
  • 172
    Steidler, L., Neirynck, S., Huyghebaert, N., Snoeck, V., Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nature Biotechnol. 2003, 21, 785789.
  • 173
    Joosten, H., Bidlas, E., Garofalo, N., Salmonella detection in probiotic products. Int. J. Food Microbiol. 2006, 110, 104107.
  • 174
    Champagne, C. P., Raymond, Y., Gonthier, J., Audet, P., Enumeration of the contaminating bacterial microbiota in unfermented pasteurized milks enriched with probiotic bacteria. Can. J. Microbiol. 2009, 55, 410418.
  • 175
    Reuter, G., Present and future of probiotics in Germany and in Central Europe. Biosci. Microfl. 1997, 16, 4351.
  • 176
    Hamilton-Miller, J. M., Shah, S., Winkler, J. T., Public health issues arising from microbiological and labelling quality of foods and supplements containing probiotic microorganisms. Public Health Nutr. 1999, 2, 223229.
  • 177
    Temmerman, R., Pot, B., Huys, G., Swings, J., Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int. J. Food Microbiol. 2003, 81, 110.
  • 178
    Schillinger, U., Isolation and identification of lactobacilli from novel-type probiotic and mild yoghurts and their stability during refrigerated storage. Int. J. Food Microbiol. 1999, 47, 7987.
  • 179
    Coeuret, V., Gueguen, M., Vernoux, J. P., Numbers and strains of lactobacilli in some probiotic products. Int. J. Food Microbiol. 2004, 97, 147156.
  • 180
    Roy, D., Media for the isolation and enumeration of bifidobacteria in dairy products. Int. J. Food Microbiol. 2001, 69, 167182.
  • 181
    Ercolini, D., PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J. Microbiol. Methods. 2004, 56, 297314.
  • 182
    Fasoli, S., Marzotto, M., Rizzotti, L., Rossi, F. et  al., Bacterial composition of commercial probiotic products as evaluated by PCR-DGGE analysis. Int. J. Food Microbiol. 2003, 82, 5970.
  • 183
    Theunissen, J., Britz, T. J., Torriani, S., Witthuhn, R. C., Identification of probiotic microorganisms in South African products using PCR-based DGGE analysis. Int. J. Food Microbiol. 2005, 98, 1121.
  • 184
    Huys, G., Vanhoutte, T., Vandamme, P., Application of sequence-dependent electrophoresis fingerprinting in exploring biodiversity and population dynamics of human intestinal microbiota: what can be revealed? Interdiscip. Perspect. Infect. Dis. 2008, 597603.
  • 185
    Vitali, B., Candela, M., Matteuzzi, D., Brigidi, P., Quantitative detection of probiotic Bifidobacterium strains in bacterial mixtures by using real-time PCR. Syst. Appl. Microbiol. 2003, 26, 269276.
  • 186
    Furet, J. P., Quenee, P., Tailliez, P., Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. Int. J. Food Microbiol. 2004, 97, 197207.
  • 187
    Masco, L., Temmerman, R., Vanhoutte, T., Swings, J. et  al., Quantification of bifidobacteria in probiotic products by real-time PCR targeting the 16S rRNA and recA genes. Int. J. Food Microbiol. 2007, 113, 351357.
  • 188
    Booth, I. R., Stress and the single cell : intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol. 2002, 78, 1930.
  • 189
    Lowder, M., Unge, A., Maraha, N., Jansson, J. K. et  al., Effect of starvation and the viable but nonculturable state on green fluorescent protein (GFP) fluorescence in GFP-tagged Pseudomonas fluorescens A506. App. Environ. Microbiol. 2000, 66, 31603165.
  • 190
    Sanders, M. E., Hamilton, J., Reid, G., Gibson, G., A nonviable preparation of Lactobacillus acidophilus is not a probiotic. Clin. Infect. Dis. 2007, 44, 886.
  • 191
    Adams, C. A., The probiotic paradox: live and dead cells are biological response modifiers. Nutr. Res. Rev. 2010, 23, 3746.
  • 192
    Lahtinen, S. J., Gueimonde, M., Ouwehand, A. C., Reinikainen, J. P. et  al., Probiotic bacteria may become dormant during storage. Appl. Environ. Microbiol. 2005, 71, 16621663.
  • 193
    Lahtinen, S. J., Probiotic viability – does it matter? Microb. Ecol. Health Dis. 2012, 23, 18567. http://dx.doi.org/10.3402/mehd.v23i0.18567.
  • 194
    Breeuwer, P., Abee, T., Assessment of viability of microorganisms employing fluorescence techniques. Int. J. Food Microbiol. 2000, 55, 193200.
  • 195
    Müller, S., Nebe-von-Caron, G., Functional single-cell analyses : flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol. Rev. 2010, 34, 554587.
  • 196
    Berney, M., Hames, F., Bosshard, F., Weilenmann, H. U. et  al., Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLigth kit in combination with flow cytometry. App. Environ. Microbiol. 2007, 70, 32833290.
  • 197
    Volkert, M., Ananta, E., Luscher, C., Knorr, D., Effect of air freezing, spray freezing and pressure shift freezing on membrane integrity and viability of Lactobacillus rhamnosus GG. J. Food Engin. 2008, 87, 532540.
  • 198
    Schell, M. A., Karmirantzou, M., Snel, B., Vilanova, D. et  al., The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. USA 2002, 99, 1442214427.
  • 199
    Lee, J. H., O'Sullivan, D. J., Genomic insights into bifidobacteria. Microbiol. Mol. Biol. Rev. 2010, 74, 378416.
  • 200
    van de Guchte, M., Penaud, S., Grimaldi, C., Barbe, V. et  al., The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc. Natl. Acad. Sci. USA 2006, 103, 92749279.
  • 201
    Callanan, M., Mining the probiotic genome: advanced strategies, enhanced benefits, perceived obstacles. Curr. Pharm. Des. 2005, 11, 2536.
  • 202
    Siezen, R. J., Wilson, G., Probiotics genomics. Microb. Biotech. 2010, 3, 19.
  • 203
    Ranadheera, R. D. C. S., Baines, S. K., Adams, M. C., Importance of food in probiotic efficacy. Food Res. Int. 2010, 43, 17.
  • 204
    Sanders, M. E., Marco, M. L., Food formats for effective delivery of probiotics. Annu. Rev. Food Sci. Technol. 2010, 1, 6585.
  • 205
    Foligne, B., Dewulf, J., Breton, J., Claisse, O. et  al., Probiotic properties of non-conventional lactic acid bacteria: immunomodulation by Oenococcus oeni. Int. J. Food Microbiol. 2010, 140, 136145.
  • 206
    Chenoll, E., Macian, M. C., Aznar, R., Identification of Carnobacterium, Lactobacillus, Leuconostoc and Pediococcus by rDNA-based techniques. Syst. Appl. Microbiol. 2003, 26, 546556.
  • 207
    Moreira, J. L., Mota, R. M., Horta, M. F., Teixeira, S. M. et  al., Identification to the species level of Lactobacillus isolated in probiotic prospecting studies of human, animal or food origin by 16S-23S rRNA restriction profiling. BMC Microbiol. 2005, 5, 15.
  • 208
    Salminen, M. K., Tynkkynen, H., Rautelin, M., Saxelin, M. et  al., Lactobacillus bacteremia during a rapid increase in probiotic use of Lactobacillus rhamnosus GG in Finland. Clin. Infect. Dis. 2002, 35, 11551160.
  • 209
    Gevers, D., Huys, G., Swings, J., Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol. Lett. 2001, 205, 3136.
  • 210
    Švec, P., Vancanneyt, M., Seman, M., Snauwaert, C. et  al., Evaluation of (GTG)5-PCR for identification of Enterococcus spp. FEMS Microbiol. Lett. 2005, 247, 5963.
  • 211
    Křížová, J., Španová, A., Rittich, B., Evaluation of amplified ribosomal DNA restriction analysis (ARDRA) and species-specific PCR for identification of Bifidobacterium species. Syst. Appl. Microbiol. 2006, 29, 3644.
  • 212
    Roy, D., Sirois, S., Molecular differentiation of Bifidobacterium species with amplified ribosomal DNA restriction analysis and alignment of short regions of the ldh gene. FEMS Microbiol. Lett. 2000, 191, 1724.
  • 213
    Ventura, M., Elli, M., Reniero, R., Zink, R., Molecular microbial analysis of Bifidobacterium isolates from different environments by the species-specific amplified ribosomal DNA restriction analysis (ARDRA). FEMS Microbiol. Ecol. 2001, 36, 113121.
  • 214
    Gómez, Zavaglia, A., de Urraza, P., De Antoni, G., Characterization of Bifidobacterium strains using BOX primers. Anaerobe 2000, 6, 169177.
  • 215
    Masco, L., Huys, G., Gevers, D., Verbrugghen, L. et  al., Identification of Bifidobacterium species using rep-PCR fingerprinting. Syst. Appl. Microbiol. 2003, 26, 557563.
  • 216
    Ventura, M., Meylan, V., Zink, R., Identification and tracing of Bifidobacterium species by use of enterobacterial repetitive intergenic consensus sequences. Appl. Environ. Microbiol. 2003, 69, 42964301.
  • 217
    Senesi, S. F., Celandroni, A., Tavanti, A., Ghelardi, E., Molecular characterization and identification of Bacillus clausii strains marketed for use in oral bacteriotherapy. Appl. Environ. Microbiol. 2001, 67, 834839.
  • 218
    Cherif, A., Brusetti, L., Borin, S., Rizzi, A. et  al., Genetic relationship in the ‘Bacillus cereus group' by rep-PCR fingerprinting and sequencing of a Bacillus anthracis-specific rep-PCR fragment. J. Appl. Microbiol 2003, 94, 11081119.
  • 219
    Dherbécourt, J., Thierry, A., Madec, M. N., Lortal, S., Comparison of amplified ribosomal DNA restriction analysis, peptidoglycan hydrolase and biochemical profiles for rapid dairy propionibacteria species identification. Res. Microbiol. 2006, 157, 905913.
  • 220
    Tilsala-Timisjarvi, A., Alatossava, T., Characterization of the 16S-23S and 23S-5S rRNA intergenic spacer regions of dairy propionibacteria and their identification with species-specific primers by PCR. Int. J. Food Microbiol. 2001, 68, 4552.
  • 221
    Vassart, G., Georges, M., Monsieur, R., Brogas, H. et  al., A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science 1987, 235, 683684.
  • 222
    Groenewald, M., Daniel, H. M., Robert, V., Poot, G. A. et  al., Polyphasic re-examination of Debaryomyces hansenii strains and reinstatement of D. hansenii, D. fabryi and D. subglobosus. Persoonia 2008, 21, 1727.