5 References

  • 1
    Larkin, T., Price, W. E., Astheimer, L., The key importance of soy isoflavone bioavailability to understanding health bene-fits. Crit. Rev. Food Sci. Nutr. 2008, 48, 538552.
  • 2
    Nurmi, T., Mazur, W., Heinonen, S., Kokkonen, J. et al., Isoflavone content of the soy based supplements. J. Pharmaceut. Biomed. Analysis 2002, 28, 111.
  • 3
    Murphy, P. A., Barua, K., Hauck, C. C., Solvent extraction selection in the determination of isoflavones in soy foods. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 777, 129138.
  • 4
    Wang, H. J., Murphy, P. A., Isoflavone content in commercial soybean foods. J. Agricultural Food Chem. 1994, 42, 16661673.
  • 5
    Yu, H., Harris, R. E., Gao, Y. T., Gao, R. et al., Comparative epidemiology of cancers of the colon, rectum, prostate and breast in Shanghai, China versus the United States. Int. J. Epidemiol. 1991, 20, 7681.
  • 6
    Rose, D. P., Boyar, A. P., Wynder, E. L., International comparisons of mortality rates for cancer of the breast, ovary, prostate, and colon, and per capita food consumption. Cancer 1986, 58, 23632371.
  • 7
    Adlercreutz, H., Hamalainen, E., Gorbach, S., Goldin, B., Dietary phyto-oestrogens and the menopause in Japan. Lancet 1992, 339, 1233.
  • 8
    Wuttke, W., Jarry, H., Seidlová-Wuttke, D., isoflavone-safe food additives or dangerous drugs? Ageing Res. Rev. 2007, 6, 150188.
  • 9
    Reiter, E., Gerster, P., Jungbauer, A., Red clover and soy isoflavone-an in vitro safety assessment. Gynecol. Endocrinol. 2011, 27, 10371042.
  • 10
    Molla, M. D. J., Hidalgo-Mora, J. J., Soteras, M. G., Phyto-therapy as alternative to hormone replacement therapy. Front. Biosci., Scholar Ed. 2011, S3, 191204.
  • 11
    Jassi, H. K., Jain, A., Arora, S., Chitra, R., Effect of soy proteins vs soy isoflavones on lipid profile in postmenopausal women. Indian J. Clin. Biochem. 2010, 25, 201207.
  • 12
    Bolca, S., Urpi-Sarda, M., Blondeel, P., Roche, N. et al., Disposition of soy isoflavones in normal human breast tissue. Am. J. Clin. Nutr. 2010, 91, 976984.
  • 13
    Andres, S., Abraham, K., Appel, K. E., Lampen, A., Risks and benefits of dietary isoflavones for cancer. Crit. Rev. Toxicol. 2011, 41, 463506.
  • 14
    Kalita, J. C., Milligan, S. R., In vitro estrogenic potency of phytoestrogen-glycosides and some plant flavanoids. Indian J. Sci. Technol. 2010, 3, 11421147.
  • 15
    Schryver, T., Smith, C., Wall, M., Self-identities and BMI of Minnesotan soy consumers and non-consumers. Obesity 2007, 15, 11011106.
  • 16
    Rietjens, I. M. C. M., Sotoca, A. M., Vervoort, J., Louisse, J., Mechanisms underlying the dualistic mode of action of major soy isoflavones in relation to cell proliferation and cancer risks. Mol. Nutr. Food Res. 2013, 57, 100113.
  • 17
    Griffiths, L. A., Barrow, A., Metabolism of flavonoid compounds in germ-free rats. Biochem. J.1972, 130, 11611162.
  • 18
    Xu, X., Harris, K. S., Wang, H. J., Murphy, P. A. et al., Bioavai-lability of soybean isoflavones depends upon gut microflora in women. J. Nutr. 1995, 125, 23072315.
  • 19
    Liu, Y., Hu, M., Absorption and metabolism of flavonoids in the Caco-2 cell culture model and a perfused rat intestinal model. Drug Metabol. Dispos. 2002, 30, 370377.
  • 20
    Bokkenheuser, V. D., Shackleton, C. H. L., Winter, J., Hydro-lysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem. J. 1987, 248, 953956.
  • 21
    Setchell, K. D. R., Brown, N. M., Desai, P., Zimmer-Nechemias, L. et al., Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J. Nutr. 2001, 131, 13621375.
  • 22
    Rowland, I., Faughnan, M., Hoey, L., Waehaelae, K. et al., Bioavailability of phyto-oestrogens. Br. J. Nutr. 2003, 89, S45S58.
  • 23
    Walsh, K. R., Haak, S. J., Bohn, T., Tian, Q. et al., Isoflavonoid glucosides are deconjugated and absorbed in the small intestine of human subjects with ileostomies. Am. J. Clin. Nutr. 2007, 85, 10501056.
  • 24
    Day, A. J., Dupont, M. S., Ridley, S., Rhodes, M. et al., De-glycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Lett. 1998, 436, 7175.
  • 25
    Allred, C. D., Ju, Y. H., Allred, K. F., Chang, J. et al., Dietary genistin stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein. Carcinogenesis 2001, 22, 16671673.
  • 26
    Boniglia, C., Carratù, B., Gargiulo, R., Giammarioli, S. et al., Content of phytoestrogens in soy-based dietary supplements. Food Chem. 2009, 115, 13891392.
  • 27
    Rostagno, M. A., Villares, A., Guillamón, E., García-Lafuente, A. et al., Sample preparation for the analysis of isoflavones from soybeans and soy foods. J. Chromatogr. A 2009, 1216, 229.
  • 28
    Fiechter, G., Raba, B., Jungmayr, A., Mayer, H. K., Characterization of isoflavone composition in soy-based nutritional supplements via ultra performance liquid chromatography. Analyt. Chim. Acta 2010, 672, 7278.
  • 29
    Oomen, A. G., Rompelberg, C. J. M., Bruil, M. A., Dobbe, C. J. G. et al., Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Arch. Environ. Contam. Toxicol. 2003, 44, 281287.
  • 30
    Brand, W., Van Der Wel, P. A. I., Rein, M. J., Barron, D. et al., Metabolism and transport of the citrus flavonoid hesperetin in Caco-2 cell monolayers. Drug Metabol. Disposition 2008, 36, 17941802.
  • 31
    Day, A. J., Gee, J. M., DuPont, M. S., Johnson, I. T. et al., Absorption of quercetin-3-glucoside and quercetin-4′-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem. Pharmacol. 2003, 65, 11991206.
  • 32
    Daniels, L. B., Coyle, P. J., Chiao, Y. B., Purification and characterization of a cytosolic broad specificity β-glucosidase from human liver. J. Biol. Chem. 1981, 256, 1300413013.
  • 33
    Brand, W., Padilla, B., van, B. P. J., Williamson, G. et al., The effect of co-administered flavonoids on the metabolism of hesperetin and the disposition of its metabolites in Caco-2 cell monolayers. Mol. Nutr. Food Res. 2010, 54, 851860.
  • 34
    Zhang, L., Pan Siu, A. K., Lin, G., Zuo, Z., Intestinal absorbability of three Radix Puerariae isoflavones including daidzein, daidzin and puerarin. Chinese Med. 2011, 6, 17498546.
  • 35
    Day, A. J., Cañada, F. J., Díaz, J. C., Kroon, P. A. et al., Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 2000, 468, 166170.
  • 36
    Kiwamoto, R., Rietjens, I. M. C. M., Punt, A., A physiologically based in silico model for trans-2-hexenal detoxification and DNA adduct formation in rat. Chem. Res. Toxicol. 2012, 25, 26302641.
  • 37
    van de Kerkhof, E. G., de Graaf, I. A. M., Groothuis, G. M. M., In vitro methods to study intestinal drug metabolism. Curr. Drug Metabol. 2007, 8, 658675.
  • 38
    Andlauer, W., Kolb, J., Fürst, P., Absorption and metabolism of genistin in the isolated rat small intestine. FEBS Lett. 2000, 475, 127130.
  • 39
    Steensma, A., Poortman, J. H., Bor, G., Kuiper, H. A. et al., Bioavailability and mechanism of absorption of the glycoside genistin in the in situ perfused intestine of the rat 2006, 8397.
  • 40
    Mihara, K., Matsumura, M., Yoshioka, E., Hanada, K. et al., Intestinal first-pass metabolism of eperisone in the rat. Pharmaceut. Res. 2001, 18, 11311137.
  • 41
    Toutain, P. L., Bousquet-Mélou, A., Plasma clearance. J. Vet. Pharmacol. Therapeut. 2004, 27, 415425.
  • 42
    Liu, L., Sun, H., Valji, W. Y., Pang, K. S., Transporters, enzymes, and enalapril removal in a rat (CC531-induced) liver metastatic model. Am. J. Physiol. Gastrointestinal Liver Physiol. 2007, 293, G1078G1088.
  • 43
    Brown, R. P., Delp, M. D., Lindstedt, S. L., Rhomberg, L. R. et al., Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health 1997, 13, 407484.
  • 44
    Elsenbrand, G., Isoflavones as phytoestrogens in food supplements and dietary foods for special medical purposes. Mol. Nutr. Food Res. 2007, 51, 13051312.
  • 45
    Piskula, M. K., Yamakoshi, J., Iwai, Y., Daidzein and genistein but not their glucosides are absorbed from the rat stomach. FEBS Lett. 1999, 447, 287291.
  • 46
    Setchell, K. D. R., Brown, N. M., Zimmer-Nechemias, L., Brashear, W. T. et al., Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am. J. Clin. Nutr. 2002, 76, 447453.
  • 47
    Hollman, P. C. H., Absorption, bioavailability, and metabolism of flavonoids. Pharmaceut. Biol. 2004, 42, 7483.
  • 48
    Steensma, A., Noteborn, H. P. J. M., Jagt, R. C. M. V. D., Polman, T. H. G. et al., Bioavailability of genistein, daidzein, and their glycosides in intestinal epithelial Caco-2 cells. Environ. Toxicol, Pharmacol. 1999, 7, 209212.
  • 49
    Chen, J., Lin, H., Hu, M., Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model. Cancer Chemother. Pharmacol. 2005, 55, 159169.
  • 50
    Walle, T., Otake, Y., Walle, U. K., Wilson, F. A., Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption. J. Nutr. 2000, 130, 26582661.
  • 51
    Ioku, K., Pongpiriyadacha, Y., Konishi, Y., Takei, Y. et al., β-Glucosidase activity in the rat small intestine toward quercetin monoglucosides. Biosci. Biotechnol. Biochem. 1998, 62, 14281431.
  • 52
    Willemsen, R., Brunken, R., Sorber, C. W. J., Hoogeveen, A. T. et al., A quantitative immunoelectron-microscopic study on soluble, membrane-associated and membrane-bound lysosomal enzymes in human intestinal epithelial cells. Histochem. J. 1991, 23, 467473.
  • 53
    Hosoda, K., Furuta, T., Yokokawa, A., Ishii, K., Identification and quantification of daidzein-7-glucuronide-4′-sulfate, genistein-7-glucuronide-4′-sulfate and genistein-4′,7-diglucuronide as major metabolites in human plasma after administration of kinako. Anal. Bioanal. Chem. 2010, 397, 15631572.
  • 54
    Zhang, Y., Hendrich, S., Murphy, P. A., Glucuronides are the main isoflavone metabolites in women. J. Nutr. 2003, 133, 399404.
  • 55
    Tang, L., Zhou, J., Yang, C. H., Xia, B. J. et al., Systematic studies of sulfation and glucuronidation of 12 flavonoids in the mouse liver S9 fraction reveal both unique and shared positional preferences. J. Agric. Food Chem. 2012, 60, 32233233.
  • 56
    Zhang, L., Lin, G., Zuo, Z., Involvement of UDP-glucuronosyltransferases in the extensive liver and intes-tinal first-pass metabolism of flavonoid baicalein. Pharm. Res. 2007, 24, 8189.
  • 57
    Hosoda, K., Furuta, T., Ishii, K., Simultaneous determination of glucuronic acid and sulfuric acid conjugated metabolites of daidzein and genistein in human plasma by high-performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 628636.
  • 58
    Gu, L., House, S. E., Prior, R. L., Fang, N. et al., Metabolic phenotype of isoflavones differ among female rats, pigs, monkeys, and women. J. Nutr. 2006, 136, 12151221.