8 References

  • 1
    Libby, P., Inflammation in atherosclerosis. Nature 2002, 420, 868874.
  • 2
    Spranger, J., Kroke, A., Mohlig, M., Hoffmann, K. et al., Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003, 52, 812817.
  • 3
    Hu, F. B., Meigs, J. B., Li, T. Y., Rifai, N. et al., Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes 2004, 53, 693700.
  • 4
    McGillicuddy, F. C., Harford, K. A., Reynolds, C. M., Oliver, E. et al., Lack of interleukin-1 receptor I (IL-1RI) protects mice from high-fat diet-induced adipose tissue inflammation coincident with improved glucose homeostasis. Diabetes 2011, 60, 16881698.
  • 5
    Oliver, E., McGillicuddy, F., Phillips, C., Toomey, S. et al., The role of inflammation and macrophage accumulation in the development of obesity-induced type 2 diabetes mellitus and the possible therapeutic effects of long-chain n-3 PUFA. Proc. Nutr. Soc. 2010, 69, 232243.
  • 6
    Osborn, O., Olefsky, J. M., The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 2012, 18, 363374.
  • 7
    Glass, C. K., Witztum, J. L., Atherosclerosis: the road ahead. Cell 2001, 104, 503516.
  • 8
    Phillips, C. M., Tierney, A. C., Perez-Martinez, P., Defoort, C. et al., Obesity and body fat classification in the metabolic syndrome: impact on cardiometabolic risk metabotype. Obesity 2013, 21, E154161.
  • 9
    Lumeng, C. N., DelProposto, J. B., Westcott, D. J., Saltiel, A. R., Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 2008, 57, 32393246.
  • 10
    Vandanmagsar, B., Youm, Y. H., Ravussin, A., Galgani, J. E. et al., The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 2011, 17, 179188.
  • 11
    Reynolds, C. M., McGillicuddy, F. C., Harford, K. A., Finucane, O. M. et al., Dietary saturated fatty acids prime the NLRP3 inflammasome via TLR4 in dendritic cells-implications for diet-induced insulin resistance. Mol. Nutr. Food Res. 2012, 56, 12121222.
  • 12
    Wen, H., Gris, D., Lei, Y., Jha, S. et al., Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 2011, 12, 408415.
  • 13
    Goldfine, A. B., Fonseca, V., Jablonski, K. A., Pyle, L. et al., The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann. Internal Med. 2010, 152, 346357.
  • 14
    Yuan, M., Konstantopoulos, N., Lee, J., Hansen, L. et al., Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 2001, 293, 16731677.
  • 15
    Oliver, E., McGillicuddy, F. C., Harford, K. A., Reynolds, C. M. et al., Docosahexaenoic acid attenuates macrophage-induced inflammation and improves insulin sensitivity in adipocytes-specific differential effects between LC n-3 PUFA. J. Nutr. Biochem. 2012, 23, 11921200.
  • 16
    Yan, Y., Jiang, W., Spinetti, T., Tardivel, A. et al., Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 2013, 38, 11541163.
  • 17
    Feskens, E. J., Virtanen, S. M., Rasanen, L., Tuomilehto, J. et al., Dietary factors determining diabetes and impaired glucose tolerance. A 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care 1995, 18, 11041112.
  • 18
    Griffin, M. D., Sanders, T. A., Davies, I. G., Morgan, L. M. et al., Effects of altering the ratio of dietary n-6 to n-3 fatty acids on insulin sensitivity, lipoprotein size, and postprandial lipemia in men and postmenopausal women aged 45–70 y: the OPTILIP Study. Am. J. Clin. Nutr. 2006, 84, 12901298.
  • 19
    Kabir, M., Skurnik, G., Naour, N., Pechtner, V. et al., Treatment for 2 mo with n 3 polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve insulin sensitivity in women with type 2 diabetes: a randomized controlled study. Am. J. Clin. Nutr.n 2007, 86, 16701679.
  • 20
    Popp-Snijders, C., Schouten, J. A., Heine, R. J., van der Meer, J. et al., Dietary supplementation of omega-3 polyunsaturated fatty acids improves insulin sensitivity in non-insulin-dependent diabetes. Diabetes Res. 1987, 4, 141147.
  • 21
    Tierney, A. C., McMonagle, J., Shaw, D. I., Gulseth, H. L. et al., Effects of dietary fat modification on insulin sensitivity and on other risk factors of the metabolic syndrome—LIPGENE: a European randomized dietary intervention study. Int. J. Obesity 2011, 35, 800809.
  • 22
    Itariu, B. K., Zeyda, M., Hochbrugger, E. E., Neuhofer, A. et al., Long-chain n-3 PUFAs reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients: a randomized controlled trial. Am. J. Clin. Nutr. 2012, 96, 11371149.
  • 23
    Cassidy, A., O'Reilly, E. J., Kay, C., Sampson, L. et al., Habitual intake of flavonoid subclasses and incident hypertension in adults. Am. J. Clin. Nutr. 2011, 93, 338347.
  • 24
    Perez-Jimenez, J., Fezeu, L., Touvier, M., Arnault, N. et al., Dietary intake of 337 polyphenols in French adults. Am. J. Clin. Nutr. 2011, 93, 12201228.
  • 25
    Mink, P. J., Scrafford, C. G., Barraj, L. M., Harnack, L. et al., Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am. J. Clin. Nutr. 2007, 85, 895909.
  • 26
    Peterson, J. J., Dwyer, J. T., Jacques, P. F., McCullough, M. L., Associations between flavonoids and cardiovascular disease incidence or mortality in European and US populations. Nutr. Rev. 2012, 70, 491508.
  • 27
    Halliwell, B., Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch. Biochem. Biophys. 2008, 476, 107112.
  • 28
    Hollman, P. C., Cassidy, A., Comte, B., Heinonen, M. et al., The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established. J. Nutr. 2011, 141, 989S1009S.
  • 29
    Fraga, C. G., Oteiza, P. I., Dietary flavonoids: role of (-)-epicatechin and related procyanidins in cell signaling. Free Rad. Biol. Med. 2011, 51, 813823.
  • 30
    Spencer, J. P., The impact of fruit flavonoids on memory and cognition. Br. J. Nutr. 2010, 104 (Suppl 3), S40S47.
  • 31
    Coban, D., Milenkovic, D., Chanet, A., Khallou-Laschet, J. et al., Dietary curcumin inhibits atherosclerosis by affecting the expression of genes involved in leukocyte adhesion and transendothelial migration. Mol. Nutr. Food Res. 2012, 56, 12701281.
  • 32
    Goto, T., Saito, Y., Morikawa, K., Kanamaru, Y., Nagaoka, S., Epigallocatechin gallate changes mRNA expression level of genes involved in cholesterol metabolism in hepatocytes. Br. J. Nutr. 2012, 107, 769773.
  • 33
    Chanet, A., Milenkovic, D., Claude, S., Maier, J. A. et al., Flavanone metabolites decrease monocyte adhesion to TNF-alpha-activated endothelial cells by modulating expression of atherosclerosis-related genes. Br. J. Nutr. 2013,110, 112.
  • 34
    Garcia-Conesa, M. T., Tribolo, S., Guyot, S., Tomas-Barberan, F. A. et al., Oligomeric procyanidins inhibit cell migration and modulate the expression of migration and proliferation associated genes in human umbilical vascular endothelial cells. Mol. Nutr. Food Res. 2009, 53, 266276.
  • 35
    Spencer, J. P., Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr. 2009, 4, 243250.
  • 36
    Milenkovic, D., Jude, B., Morand, C., miRNA as molecular target of polyphenols underlying their biological effects. Free Rad. Biol. Med. 2013, 64, 4051.
  • 37
    Wingrove, J. A., Daniels, S. E., Sehnert, A. J., Tingley, W. et al., Correlation of peripheral-blood gene expression with the extent of coronary artery stenosis. Circ. Cardiovasc. Genet. 2008, 1, 3138.
  • 38
    Cappuzzello, C., Napolitano, M., Arcelli, D., Melillo, G. et al., Gene expression profiles in peripheral blood mononuclear cells of chronic heart failure patients. Physiol. Genomics 2009, 38, 233240.
  • 39
    Kang, J. G., Patino, W. D., Matoba, S., Hwang, P. M., Genomic analysis of circulating cells: a window into atherosclerosis. Trends Cardiovasc. Med. 2006, 16, 163168.
  • 40
    Baechler, E. C., Batliwalla, F. M., Karypis, G., Gaffney, P. M. et al., Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 2003, 100, 26102615.
  • 41
    O'Grada, C., Morine, M., Morris, C., Ryan, M. et al., PBMCs reflect the immune component of the WAT transcriptome—implications as biomarkers of metabolic health in the postprandial state. Mol. Nutr. Food Res. 2014, 58, 808820.
  • 42
    Hall, W. L., Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function. Nutr. Res. Rev. 2009, 22, 1838.
  • 43
    Jackson, K. G., Armah, C. K., Minihane, A. M., Meal fatty acids and postprandial vascular reactivity. Biochem. Soc. Transact. 2007, 35, 451453.
  • 44
    Margioris, A. N., Fatty acids and postprandial inflammation. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 129137.
  • 45
    Calder, P. C., Ahluwalia, N., Brouns, F., Buetler, T. et al., Dietary factors and low-grade inflammation in relation to overweight and obesity. Br. J. Nutr. 2011, 106 (Suppl 3), S5S78.
  • 46
    Afman, L. A., Muller, M., Human nutrigenomics of gene regulation by dietary fatty acids. Progress Lipid Res. 2012, 51, 6370.
  • 47
    Bouwens, M., Grootte Bromhaar, M., Jansen, J., Muller, M. et al., Postprandial dietary lipid-specific effects on human peripheral blood mononuclear cell gene expression profiles. Am. J. Clin. Nutr. 2010, 91, 208217.
  • 48
    van Dijk, S. J., Mensink, M., Esser, D., Feskens, E. J. et al., Responses to high-fat challenges varying in fat type in subjects with different metabolic risk phenotypes: a randomized trial. PloS One 2012, 7, e41388.
  • 49
    Esser, D., van Dijk, S. J., Oosterink, E., Muller, M. et al., A high-fat SFA, MUFA, or n3 PUFA challenge affects the vascular response and initiates an activated state of cellular adherence in lean and obese middle-aged men. J. Nutr. 2013, 143, 843851.
  • 50
    Myhrstad, M. C., Narverud, I., Telle-Hansen, V. H., Karhu, T. et al., Effect of the fat composition of a single high-fat meal on inflammatory markers in healthy young women. Br. J. Nutr. 2011, 106, 18261835.
  • 51
    Esser, D., Oosterink, E., op 't Roodt, J., Henry, R. M. et al., Vascular and inflammatory high fat meal responses in young healthy men; a discriminative role of IL-8 observed in a randomized trial. PloS One 2013, 8, e53474.
  • 52
    Baggiolini, M., Moser, B., Clark-Lewis, I., Interleukin-8 and related chemotactic cytokines. The Giles Filley Lecture. Chest 1994, 105, 95S98S.
  • 53
    Gerszten, R. E., Garcia-Zepeda, E. A., Lim, Y. C., Yoshida, M. et al., MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 1999, 398, 718723.
  • 54
    Bouwens, M., van de Rest, O., Dellschaft, N., Bromhaar, M. G. et al., Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells. Am. J. Clin. Nutr. 2009, 90, 415424.
  • 55
    Vedin, I., Cederholm, T., Freund-Levi, Y., Basun, H. et al., Effects of DHA-rich n-3 fatty acid supplementation on gene expression in blood mononuclear leukocytes: the OmegAD study. PloS One 2012, 7, e35425.
  • 56
    Gorjao, R., Verlengia, R., Lima, T. M., Soriano, F. G. et al., Effect of docosahexaenoic acid-rich fish oil supplementation on human leukocyte function. Clin. Nutr. 2006, 25, 923938.
  • 57
    Schmidt, S., Stahl, F., Mutz, K. O., Scheper, T. et al., Different gene expression profiles in normo- and dyslipidemic men after fish oil supplementation: results from a randomized controlled trial. Lipids Health Dis. 2012, 11, 105.
  • 58
    Rudkowska, I., Ponton, A., Jacques, H., Lavigne, C. et al., Effects of a supplementation of n-3 polyunsaturated fatty acids with or without fish gelatin on gene expression in peripheral blood mononuclear cells in obese, insulin-resistant subjects. J. Nutrigenet. Nutrigenomics 2011, 4, 192202.
  • 59
    Baumann, K. H., Hessel, F., Larass, I., Muller, T. et al., Dietary omega-3, omega-6, and omega-9 unsaturated fatty acids and growth factor and cytokine gene expression in unstimulated and stimulated monocytes. A randomized volunteer study. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 5966.
  • 60
    Weaver, K. L., Ivester, P., Seeds, M., Case, L. D. et al., Effect of dietary fatty acids on inflammatory gene expression in healthy humans. J. Biol. Chem. 2009, 284, 1540015407.
  • 61
    Camargo, A., Delgado-Lista, J., Garcia-Rios, A., Cruz-Teno, C. et al., Expression of proinflammatory, proatherogenic genes is reduced by the Mediterranean diet in elderly people. Br. J. Nutr. 2012, 108, 500508.
  • 62
    Cruz-Teno, C., Perez-Martinez, P., Delgado-Lista, J., Yubero-Serrano, E. M. et al., Dietary fat modifies the postprandial inflammatory state in subjects with metabolic syndrome: the LIPGENE study. Mol. Nutr. Food Res. 2012, 56, 854865.
  • 63
    van Dijk, S. J., Feskens, E. J., Bos, M. B., de Groot, L. C. et al., Consumption of a high monounsaturated fat diet reduces oxidative phosphorylation gene expression in peripheral blood mononuclear cells of abdominally overweight men and women. J. Nutr. 2012, 142, 12191225.
  • 64
    Boomgaarden, I., Egert, S., Rimbach, G., Wolffram, S. et al., Quercetin supplementation and its effect on human monocyte gene expression profiles in vivo. Br. J. Nutr. 2010, 104, 336345.
  • 65
    Sperandio, M., Selectins and glycosyltransferases in leukocyte rolling in vivo. FEBS J. 2006, 273, 43774389.
  • 66
    Ermak, N., Lacour, B., Drueke, T. B., Vicca, S., Role of reactive oxygen species and Bax in oxidized low density lipoprotein-induced apoptosis of human monocytes. Atherosclerosis 2008, 200, 247256.
  • 67
    Kawai, Y., Nishikawa, T., Shiba, Y., Saito, S. et al., Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: implication in the anti-atherosclerotic mechanism of dietary flavonoids. J. Biol. Chem. 2008, 283, 94249434.
  • 68
    Milenkovic, D., Deval, C., Dubray, C., Mazur, A. et al., Hesperidin displays relevant role in the nutrigenomic effect of orange juice on blood leukocytes in human volunteers: a randomized controlled cross-over study. PloS One 2011, 6, e26669.
  • 69
    Tome-Carneiro, J., Larrosa, M., Yanez-Gascon, M. J., Davalos, A. et al., One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol. Res. 2013a, 72, 6982.
  • 70
    Tome-Carneiro, J., Gonzalvez, M., Larrosa, M., Yanez-Gascon, M. J. et al., Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc. Drugs Therapy 2013b, 27, 3748.
  • 71
    De Groote, D., Van Belleghem, K., Deviere, J., Van Brussel, W. et al., Effect of the intake of resveratrol, resveratrol phosphate, and catechin-rich grape seed extract on markers of oxidative stress and gene expression in adult obese subjects. Ann. Nutr. Metab. 2012, 61, 1524.
  • 72
    Niculescu, M. D., Pop, E. A., Fischer, L. M., Zeisel, S. H., Dietary isoflavones differentially induce gene expression changes in lymphocytes from postmenopausal women who form equol as compared with those who do not. J. Nutr. Biochem. 2007, 18, 380390.
  • 73
    van der Velpen, V., Geelen, A., Schouten, E. G., Hollman, P. C. et al., Estrogen receptor-mediated effects of isoflavone supplementation were not observed in whole-genome gene expression profiles of peripheral blood mononuclear cells in postmenopausal, equol-producing women. J. Nutr. 2013, 143, 774780.
  • 74
    Ein-Dor, L., Kela, I., Getz, G., Givol, D. et al., Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 2005, 21, 171178.
  • 75
    Beltrame, L., Rizzetto, L., Paola, R., Rocca-Serra, P. et al., Using pathway signatures as means of identifying similarities among microarray experiments. PloS One 2009, 4, e4128.
  • 76
    Camargo, A., Ruano, J., Fernandez, J. M., Parnell, L. D. et al., Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil. BMC Genomics 2010, 11, 253.
  • 77
    Bakker, G. C., van Erk, M. J., Pellis, L., Wopereis, S. et al., An antiinflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men: a nutrigenomics approach. Am. J. Clin. Nutr. 2010, 91, 10441059.
  • 78
    Keijer, J., van Helden, Y. G., Bunschoten, A., van Schothorst, E. M., Transcriptome analysis in benefit-risk assessment of micronutrients and bioactive food components. Mol. Nutr. Food Res. 2010, 54, 240248.
  • 79
    Morine, M. J., Toomey, S., McGillicuddy, F. C., Reynolds, C. M. et al., Network analysis of adipose tissue gene expression highlights altered metabolic and regulatory transcriptomic activity in high-fat-diet-fed IL-1RI knockout mice. J. Nutr. Biochem. 2013, 24, 788795.
  • 80
    Morine, M. J., Tierney, A. C., van Ommen, B., Daniel, H. et al., Transcriptomic coordination in the human metabolic network reveals links between n-3 fat intake, adipose tissue gene expression and metabolic health. PLoS Comput. Biol. 2011, 7, e1002223.