5 References

  • 1
    Garcia Rodriguez, P., Eikenboom, H. C., Tesselaar, M. E., Huisman, M. V. et al., Plasma levels of microparticle-associated tissue factor activity in patients with clinically suspected pulmonary embolism. Thromb. Res. 2010, 126, 345349.
  • 2
    Shet, A. S., Key, N. S., Hebbel, R. P., Measuring circulating cell-derived microparticles. J. Thromb. Haemost. 2004, 2, 18481850.
  • 3
    Shah, M. D., Bergeron, A. L., Dong, J. F., Lopez, J. A., Flow cytometric measurement of microparticles: pitfalls and protocol modifications. Platelets 2008, 19, 365372.
  • 4
    Faure, V., Dou, L., Sabatier, F., Cerini, C. et al., Elevation of circulating endothelial microparticles in patients with chronic renal failure. J. Thromb. Haemost. 2006, 4, 566573.
  • 5
    Morel, O., Morel, N., Freyssinet, J. M., Toti, F., Platelet microparticles and vascular cells interactions: a checkpoint between the haemostatic and thrombotic responses. Platelets 2008, 19, 923.
  • 6
    Mobarrez, F., Antovic, J., Egberg, N., Hansson, M. et al., A multicolor flow cytometric assay for measurement of platelet-derived microparticles. Thromb. Res. 2010, 125, e110e116.
  • 7
    Mause, S. F., Weber, C., Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ. Res. 2010, 107, 10471057.
  • 8
    Morel, O., Ohlmann, P., Morel, N., Jesel, L. et al., Microparticles and cardiovascular disease. Arch. Mal. Coeur. Vaiss. 2005, 98, 226235.
  • 9
    Amabile, N., Guerin, A. P., Leroyer, A., Mallat, Z. et al., Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J. Am. Soc. Nephrol. 2005, 16, 33813388.
  • 10
    Koga, H., Sugiyama, S., Kugiyama, K., Fukushima, H. et al., Elevated levels of remnant lipoproteins are associated with plasma platelet microparticles in patients with type-2 diabetes mellitus without obstructive coronary artery disease. Eur. Heart J. 2006, 27, 817823.
  • 11
    Tan, K. T., Tayebjee, M. H., Lim, H. S., Lip, G. Y., Clinically apparent atherosclerotic disease in diabetes is associated with an increase in platelet microparticle levels. Diabet. Med. 2005, 22, 16571662.
  • 12
    Tan, K. T., Tayebjee, M. H., Macfadyen, R. J., Lip, G. Y., et al., Elevated platelet microparticles in stable coronary artery disease are unrelated to disease severity or to indices of inflammation. Platelets 2005, 16, 368371.
  • 13
    Jy, W., Minagar, A., Jimenez, J. J., Sheremata, W. A. et al., Endothelial microparticles (EMP) bind and activate monocytes: elevated EMP-monocyte conjugates in multiple sclerosis. Front. Biosci. 2004, 9, 31373144.
  • 14
    Sabatier, F., Darmon, P., Hugel, B., Combes, V. et al., Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes 2002, 51, 28402845.
  • 15
    Toth, B., Liebhardt, S., Steinig, K., Ditsch, N. et al., Platelet-derived microparticles and coagulation activation in breast cancer patients. Thromb. Haemost. 2008, 100, 663669.
  • 16
    Cohen, Z., Gonzales, R. F., Davis-Gorman, G. F., Copeland, J. G. et al., Thrombin activity and platelet microparticle formation are increased in type 2 diabetic platelets: a potential correlation with caspase activation. Thromb. Res. 2002, 107, 217221.
  • 17
    Boulanger, C. M., Amabile, N., Tedgui, A., Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension 2006, 48, 180186.
  • 18
    Shantsila, E., Endothelial microparticles: a universal marker of vascular health?. J. Hum. Hypertens. 2009, 23, 359361.
  • 19
    Diehl, P., Aleker, M., Helbing, T., Sossong, V. et al., Increased platelet, leukocyte and endothelial microparticles predict enhanced coagulation and vascular inflammation in pulmonary hypertension. J. Thromb. Thrombolysis 2011, 31, 173179.
  • 20
    Zhang, X., McGeoch, S. C., Johnstone, A. M., Holtrop, G. et al., Platelet-derived microparticle count and surface molecule expression differ between subjects with and without type 2 diabetes, independently of obesity status. J. Thromb. Thrombolysis 2013. DOI:10.1007/s11239-013-1000-2.
  • 21
    National Collaborating Centre for Chronic Conditions (UK). Type 2 Diabetes: National Clinical Guideline for Management in Primary and Secondary Care (Update). 2008.
  • 22
    Wolever, T. M., Jenkins, D. J., Vuksan, V., Jenkins, A. L. et al., Beneficial effect of a low glycaemic index diet in type 2 diabetes. Diabet. Med. 1992, 9, 451458.
  • 23
    Jenkins, D. J., Wolever, T. M., Buckley, G., Lam, K. Y. et al., Low-glycemic-index starchy foods in the diabetic diet. Am. J. Clin. Nutr. 1988, 48, 248254.
  • 24
    Fontvieille, A. M., Rizkalla, S. W., Penfornis, A., Acosta, M. et al., The use of low glycaemic index foods improves metabolic control of diabetic patients over five weeks. Diabet. Med. 1992, 9, 444450.
  • 25
    Jarvi, A. E., Karlstrom, B. E., Granfeldt, Y. E., Bjorck, I. E. et al., Improved glycemic control and lipid profile and normalized fibrinolytic activity on a low-glycemic index diet in type 2 diabetic patients. Diabetes Care 1999, 22, 1018.
  • 26
    Rizkalla, S. W., Taghrid, L., Laromiguiere, M., Huet, D. et al., Improved plasma glucose control, whole-body glucose utilization, and lipid profile on a low-glycemic index diet in type 2 diabetic men: a randomized controlled trial. Diabetes Care 2004, 27, 18661872.
  • 27
    Jimenez-Cruz, A., Bacardi-Gascon, M., Turnbull, W. H., Rosales-Garay, P.,et al., A flexible, low-glycemic index mexican-style diet in overweight and obese subjects with type 2 diabetes improves metabolic parameters during a 6-week treatment period. Diabetes Care 2003, 26, 19671970.
  • 28
    Brand, J. C., Colagiuri, S., Crossman, S., Allen, A. et al., Low-glycemic index foods improve long-term glycemic control in NIDDM. Diabetes Care 1991, 14, 95101.
  • 29
    Cavalot, F., Petrelli, A., Traversa, M., Bonomo, K. et al., Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: lessons from the San Luigi Gonzaga Diabetes Study. J. Clin. Endocrinol. Metab. 2006, 91, 813819.
  • 30
    Shiraiwa, T., Kaneto, H., Miyatsuka, T., Kato, K. et al., Post-prandial hyperglycemia is an important predictor of the incidence of diabetic microangiopathy in Japanese type 2 diabetic patients. Biochem. Biophys. Res. Commun. 2005, 336, 339345.
  • 31
    Quagliaro, L., Piconi, L., Assaloni, R., Martinelli, L. et al., Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes 2003, 52, 27952804.
  • 32
    Ceriello, A., Quagliaro, L., Catone, B., Pascon, R. et al., Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care 2002, 25, 14391443.
  • 33
    Monnier, L., Mas, E., Ginet, C., Michel, F. et al., Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 2006, 295, 16811687.
  • 34
    Esposito, K., Giugliano, D., Nappo, F., Marfella, R., Campanian Postprandial Hyperglycemia Study Group. Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation 2004, 110, 214219.
  • 35
    Dandona, P., Aljada, A., O'donnell, A., Dhindsa, S., et al., Insulin Is an Anti-inflammatory and Anti-atherosclerotic Hormone. Metab. Syndr. Relat. Disord. 2004, 2, 137142.
  • 36
    Ahuja, K. D., Adams, M. J., Robertson, I. K., Ball, M. J., Acute effect of a high-carbohydrate low-fat meal on platelet aggregation. Platelets 2009, 20, 606609.
  • 37
    Santilli, F., Formoso, G., Sbraccia, P., Averna, M. et al., Postprandial hyperglycemia is a determinant of platelet activation in early type 2 diabetes mellitus. J. Thromb. Haemost. 2010, 8, 828837.
  • 38
    Yngen, M., Ostenson, C. G., Hjemdahl, P., Wallen, N. H., Meal-induced platelet activation in Type 2 diabetes mellitus: effects of treatment with repaglinide and glibenclamide. Diabet. Med. 2006, 23, 134140.
  • 39
    Foster-Powell, K., Holt, S. H., Brand-Miller, J. C., International table of glycemic index and glycemic load values: 2002. Am. J. Clin. Nutr. 2002, 76, 556.
  • 40
    Thomas, D., Elliott, E. J., Low glycaemic index, or low glycaemic load, diets for diabetes mellitus. Cochrane Database Syst. Rev. 2009, 1, CD006296.
  • 41
    Senoglu, N., Yuzbasioglu, M. F., Aral, M., Ezberci, M. et al., Protective effects of N-acetylcysteine and beta-glucan pretreatment on oxidative stress in cecal ligation and puncture model of sepsis. J. Invest. Surg. 2008, 21, 237243.
  • 42
    Chen, C. Y., Milbury, P. E., Collins, F. W., Blumberg, J. B., Avenanthramides are bioavailable and have antioxidant activity in humans after acute consumption of an enriched mixture from oats. J. Nutr. 2007, 137, 13751382.
  • 43
    McGeoch, S. C., Johnstone, A. M., Lobley, G. E., Adamson, J. et al., A randomized crossover study to assess the effect of an oat-rich diet on glycaemic control, plasma lipids and postprandial glycaemia, inflammation and oxidative stress in Type 2 diabetes. Diabet. Med. 2013, 30, 13141323.
  • 44
    O'Kennedy, N., Crosbie, L., van Lieshout, M., Broom, J. I. et al., Effects of antiplatelet components of tomato extract on platelet function in vitro and ex vivo: a time-course cannulation study in healthy humans. Am. J. Clin. Nutr. 2006, 84, 570579.
  • 45
    Dragovic, R. A., Gardiner, C., Brooks, A. S., Tannetta, D. S. et al., Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 2011, 7, 780788.
  • 46
    Garza-Licudine, E., Deo, D., Yu, S., Uz-Zaman, A. et al., Portable nanoparticle quantization using a resizable nanopore instrument—the IZON qNano. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 2010, 57365739.
  • 47
    Yuana, Y., Bertina, R. M., Osanto, S., Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb. Haemost. 2011, 105, 396408.
  • 48
    Yuana, Y., Oosterkamp, T. H., Bahatyrova, S., Ashcroft, B. et al., Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. J. Thromb. Haemost. 2010, 8, 315323.
  • 49
    Ashcroft, B. A., de Sonneville, J., Yuana, Y., Osanto, S. et al., Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics. Biomed. Microdevices 2012, 14, 641649.
  • 50
    VanWijk, M. J., VanBavel, E., Sturk, A., Nieuwland, R., Microparticles in cardiovascular diseases. Cardiovasc. Res. 2003, 59, 277287.
  • 51
    Chironi, G., Simon, A., Hugel, B., Del Pino, M. et al., Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 27752780.
  • 52
    Mallat, Z., Benamer, H., Hugel, B., Benessiano, J. et al., Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 2000, 101, 841843.
  • 53
    Gawaz, M., Langer, H., May, A. E., Platelets in inflammation and atherogenesis. J. Clin. Invest. 2005, 115, 33783384.
  • 54
    Mann, K. G., Thrombin formation. Chest 2003, 124, 4S10S.
  • 55
    Morrissey, J. H., Tissue factor: a key molecule in hemostatic and nonhemostatic systems. Int. J. Hematol. 2004, 79, 103108.
  • 56
    Lechner, D., Weltermann, A., Circulating tissue factor-exposing microparticles. Thromb. Res. 2008, 122(Suppl 1), S47S54.
  • 57
    Diamant, M., Nieuwland, R., Pablo, R. F., Sturk, A. et al., Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus. Circulation 2002, 106, 24422447.
  • 58
    Lechner, D., Weltermann, A., Chemotherapy-induced thrombosis: a role for microparticles and tissue factor?. Semin. Thromb. Hemost. 2008, 34, 199203.
  • 59
    Meydani, M., Potential health benefits of avenanthramides of oats. Nutrition Rev. 2009, 67, 731735.
  • 60
    Liu, L. F., Zubik, L. F., Fau, C. F., Marko, M. F. et al., The antiatherogenic potential of oat phenolic compounds. Atherosclerosis 2004, 175, 3949.
  • 61
    Lee-Manion, A. M., Price, R. K., Strain, J. J., Dimberg, L. H. et al., In vitro antioxidant activity and antigenotoxic effects of avenanthramides and related compounds. J. Agric. Food. Chem. 2009, 57, 1061910624.
  • 62
    Guo, W. F., Kong, E. F., Meydani, M., Dietary polyphenols, inflammation, and cancer. Nutr Cancer. 2009, 61, 807810.
  • 63
    Guo, W. F., Nie, L. F., Wu, D., Wise, W. M. et al., Avenanthramides inhibit proliferation of human colon cancer cell lines in vitro. Nutr. Cancer 2010, 62, 10071016.
  • 64
    Van Oostrom, A. J., Sijmonsma, T. P., Rabelink, T. J., Van Asbeck, B. S. et al., Postprandial leukocyte increase in healthy subjects. Metabolism 2003, 52, 199202.
  • 65
    van Oostrom, A. J., Rabelink, T. J., Verseyden, C., Sijmonsma, T. P. et al., Activation of leukocytes by postprandial lipemia in healthy volunteers. Atherosclerosis 2004, 177, 175182.
  • 66
    van Wijk, J. P., Cabezas, M. C., Coll, B., Joven, J. et al., Effects of rosiglitazone on postprandial leukocytes and cytokines in type 2 diabetes. Atherosclerosis 2006, 186, 152159.
  • 67
    van Oostrom, A. J., Plokker, H. W., van Asbeck, B. S., Rabelink, T. J. et al., Effects of rosuvastatin on postprandial leukocytes in mildly hyperlipidemic patients with premature coronary sclerosis. Atherosclerosis 2006, 185, 331339.
  • 68
    Smith, C. W., Diet and leukocytes. Am. J. Clin. Nutr. 2007, 86, 12571258.
  • 69
    Perez-Martinez, P., Moreno-Conde, M., Cruz-Teno, C., Ruano, J. et al., Dietary fat differentially influences regulatory endothelial function during the postprandial state in patients with metabolic syndrome: from the LIPGENE study. Atherosclerosis 2010, 209, 533538.
  • 70
    Matsumoto, N., Nomura, S., Kamihata, H., Kimura, Y. et al., Increased level of oxidized LDL-dependent monocyte-derived microparticles in acute coronary syndrome. Thromb. Haemost. 2004, 91, 146154.
  • 71
    Nagahama, M., Nomura, S., Kanazawa, S., Ozaki, Y. et al., Significance of anti-oxidized LDL antibody and monocyte-derived microparticles in anti-phospholipid antibody syndrome. Autoimmunity 2003, 36, 125131.