SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 1990; 87: 98689872.
  • 2
    Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med 1992; 23: 3745.
  • 3
    Lin YJ, Koretsky AP. Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 1997; 38: 378388.
  • 4
    Hunter DR, Komai H, Haworth RA, Jackson MD, Berkoff HA. Comparison of Ca2+, Sr2+, and Mn2+ fluxes in mitochondria of the perfused rat heart. Circ Res 1980; 47: 721727.
  • 5
    Shibuya I, Douglas WW. Indications from Mn-quenching of Fura-2 fluorescence in melanotrophs that dopamine and baclofen close Ca channels that are spontaneously open but not those opened by high [K+]O; and that Cd preferentially blocks the latter. Cell Calcium 1993; 14: 3344.
  • 6
    Kita H, Narita K, Van der Kloot W. Tetanic stimulation increases the frequency of miniature end-plate potentials at the frog neuromuscular junction in Mn2+-, CO2+-, and Ni2+-saline solutions. Brain Res 1981; 205: 111121.
  • 7
    Drapeau P, Nachshen DA. Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain. J Physiol (Lond) 1984; 348: 493510.
  • 8
    Burnett KR, Goldstein EJ, Wolf GL, Sen S, Mamourian AC. The oral administration of MnCl2: a potential alternative to IV injection for tissue contrast enhancement in magnetic resonance imaging. Magn Reson Imaging 1984; 2: 307314.
  • 9
    Narita K, Kawasaki F, Kita H. Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. Brain Res 1990; 510: 289295.
  • 10
    Mendonca DM, Gaggelli E, Lauterbur PC. Paramagnetic contrast agents in nuclear magnetic resonance medical imaging. Semin Nucl Med 1983; 13: 364376.
  • 11
    Geraldes CF, Sherry AD, Brown Rd, Koenig SH. Magnetic field dependence of solvent proton relaxation rates induced by Gd3+ and Mn2+ complexes of various polyaza macrocyclic ligands: implications for NMR imaging. Magn Reson Med 1986; 3: 242250.
  • 12
    Cory DA, Schwartzentruber DJ, Mock BH. Ingested manganese chloride as a contrast agent for magnetic resonance imaging. Magn Reson Imaging 1987; 5: 6570.
  • 13
    Fornasiero D, Bellen JC, Baker RJ, Chatterton BE. Paramagnetic complexes of manganese(II), iron(III), and gadolinium(III) as contrast agents for magnetic resonance imaging. The influence of stability constants on the biodistribution of radioactive aminopolycarboxylate complexes. Invest Radiol 1987; 22: 322327.
  • 14
    Duong TQ, Silva AC, Lee SP, Kim SG. Functional MRI of calcium-dependent synaptic activity: cross correlation with CBF and BOLD measurements. Magn Reson Med 2000; 43: 383392.
  • 15
    Lin YJ. An approach to direct imaging of brain activation with MRI by activity-induced manganese dependent, “AIM”, contrast. Pittsburgh: Carnegie Mellon University; 1997. 261 p.
  • 16
    Aoki I. Evaluation of brain activation with acupuncture stimulation using activity-induced manganese dependent contrast MRI in the rat. Hiyoshi-cho, Kyoto, Japan: Meiji University of Oriental Medicine; 1999.
  • 17
    Aoki I, Tanaka C, Takegami T, Ebisu T, Umeda M, Fukunaga M, Someya Y, Watanabe Y. Experimental functional MRI using dynamic activity-induced manganese dependent contrast (DAIM). In: Proceedings of the 7th Annual Meeting of ISMRM, Philadelphia, 1999. p 359.
  • 18
    Schmidt KF. Effect of halothane anesthesia on regional acetylcholine levels in the rat brain. Anesthesiology 1966; 27: 788792.
  • 19
    Kumagai M, Toyooka H, Mitsumori H. Brain functional mapping using manganese ion. In: Proceedings of the Japan Society for Magnetic Resonance in Medicine, Tokyo, 1999. p 149.
  • 20
    Hu TC-C, Pautler GP, MacGowan GA, Koretsky AP. Manganese enhanced MRI of the mouse heart during changes in inotropy. Magn Reson Med 2001; 46: 884890.
  • 21
    Pautler RG, Silva AC, Koretsky AP. In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn Reson Med 1998; 40: 740748.
  • 22
    Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 1988; 6: 164174.
  • 23
    Levin JM, Kaufman MJ, Ross MH, Mendelson JH, Maas LC, Cohen BM, Renshaw PF. Sequential dynamic susceptibility contrast MR experiments in human brain: residual contrast. Magn Reson Med 1995; 34: 655663.
  • 24
    Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS. Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 1993; 30: 161173.
  • 25
    Dingledine R, McBrain CJ. Excitatory amino acid transmitters. In: SiegalGJ, AgranoffBW, AlbersRW, MolinoffPB, editors. Basic neurochemistry: molecular, cellular and medical aspects. New York: Raven Press, Ltd.; 1994. p 367387.
  • 26
    Hyder F, Behar KL, Martin MA, Blamire AM, Shulman RG. Dynamic magnetic resonance imaging of the rat brain during forepaw stimulation. J Cereb Blood Flow Metab 1994; 14: 649655.
  • 27
    Gyngell ML, Bock C, Schmitz B, Hoehn-Berlage M, Hossmann KA. Variation of functional MRI signal in response to frequency of somatosensory stimulation in alpha-chloralose anesthetized rats. Magn Reson Med 1996; 36: 1315.
  • 28
    Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M. The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977; 28: 897916.
  • 29
    Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979; 6: 371388.
  • 30
    Aoki I, Tanaka C, Ebisu T, Katsuta K, Fujikawa A, Umeda M, Fukunaga M, Watanabe Y, Someya Y, Fukuda K, Takegami T, Naruse S. Mismatch between the manganese ion influx and decreased apparent diffusion coefficient of water in the focal ischemia. In: Proceedings of the 8th Annual Meeting of ISMRM, Denver, 2000. p 2012.