• 1
    Davis S, Weiss MJ, Wong JR, Lampidis TJ, Chen LB. Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine-123 by human breast adenocarcinoma-derived MCF-7 cells. J Biol Chem 1985; 260: 1384413850.
  • 2
    Rideout D, Calogeropoulou T, Jaworski JS, Dagnino R, McCarthy MR. Phosphonium salts exhibiting selective anticarcinoma activity in vitro. Anti-Cancer Drug Design 1989; 4: 265280.
  • 3
    Rideout D, Calogeropoulou T, Jaworski J, McCarthy M. Synergism through direct covalent bonding between agents: a strategy for rational design of chemotherapeutic combinations. Biopolymers 1990; 29: 247262.
  • 4
    Rideout D, Bustamante A, Patel J. Mechanism of inhibition of FaDu hypopharyngeal carcinoma cell growth by tetraphenylphosphonium chloride. Int J Cancer 1994; 57: 247253.
  • 5
    Koya K, Li Y, Wang H, Ukai T, Tatsuta N, Kawakami M, Shishido, Chen LB. MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res 1996; 56: 538543.
  • 6
    Weisberg EL, Koya K, Modica-Napolitano J, Li Y, Chen LB. In vivo administration of MKT-077 causes partial yet reversible impairment of mitochondrial function. Cancer Res 1996; 56: 551555.
  • 7
    Modica-Napolitano JS, Koya K, Weisberg E, Brunelli BT, Li Y, Chen LB. Selective damage to carcinoma mitochondria by the rhodacyanine MKT-077. Cancer Res 1996; 56: 544550.
  • 8
    Rideout D, Bustamante A, Siuzdak G. Cationic drug analysis using matrix-assisted laser desorption/ionization mass spectrometry: application to influx kinetics, multidrug resistance, and intracellular chemical change. Proc Natl Acad Sci USA 1993; 90: 1022610229.
  • 9
    Chen LB. Mitochondrial membrane potential in living cells. Ann Rev Cell Biol 1988; 4: 155181.
  • 10
    Lampidis TJ, Hasin Y, Weiss MJ, Chen LB. Selective killing of carcinoma cells in vitro by lipophilic cationic compounds: a cellular basis. Biomed Pharmacother 1985; 39: 220226.
  • 11
    Bernal SD, Lampidis TJ, McIsaac RM, Summerhayes IC, Chen LB. Anticarcinoma activity in vivo of rhodamine 123, a mitochondrial-specific dye. Science 1983; 222: 169172.
  • 12
    Herr HW Jr, Huffman JL, Huryk R, Heston WD, Melamed MR, Whitmore WF. Anticarcinoma activity of rhodamine 123 against a murine renal adenocarcinoma. Cancer Res 1988; 48: 20612063.
  • 13
    Weiss MJ, Wong JR, Ha CS, Bleday R, Salem RR, Steele GD Jr, Chen LB. Dequalinium, a topical antimicrobial agent, displays anticarcinoma activity based on selective mitochondrial accumulation. Proc Natl Acad Sci USA 1987; 84: 54445448.
  • 14
    Delikatny EJ, Roman SK, Hancock R, Jeitner TM, Lander CM, Rideout DC, Mountford CE. Tetraphenylphosphonium chloride induced MR-visible lipid accumulation in a malignant human breast cell line. Int J Cancer 1996; 67: 7279.
  • 15
    Roman SK, Jeitner TM, Hancock R, Cooper WA, Rideout DC, Delikatny EJ. Induction of magnetic resonance-visible lipid in a transformed human breast cell line by tetraphenylphosphonium chloride. Int J Cancer 1997; 73: 570579.
  • 16
    Delikatny EJ, Lander CM, Jeitner TM, Hancock R, Mountford CE. Modulation of MR-visible mobile lipid levels by cell culture conditions and correlations with chemotactic response. Int J Cancer 1996; 65: 238245.
  • 17
    Delikatny EJ, Jeitner TM. The accumulation of 1H MR-visible lipid in human glioma cells is independent of the cell cycle. Int J Oncol 1997; 11: 543550.
  • 18
    Rosi A, Luciani AM, Matarrese P, Arancia G, Viti V, Guidoni L. 1H-MRS lipid signal modulation and morphological and ultrastructural changes related to tumor cell proliferation. Magn Reson Med 1999; 42: 248257.
  • 19
    Shim H, Pilatus U, Wehrle JP, Glickson JD. Monitoring apoptosis in prostate cancer cells (DU145) by 1H NMR visible lipids. Proc Soc Magn Reson Med 1995; 3: 148.
  • 20
    Ross BD, Chenevert TL, Kim B, Ben-Yoseph O. Magnetic resonance imaging and spectroscopy: application to experimental neuro-oncology. Quart Magn Reson Biol Med 1994; 1: 89106.
  • 21
    Hakumäki JM, Poptani H, Sandmair AM, Ylä-Herttuala S, Kauppinen RA. 1H MRS detects polyunsaturated fatty acid accumulation during gene therapy of glioma: implications for the in vivo detection of apoptosis. Nat Med 1999; 5: 13231327.
  • 22
    Blankenberg FG, Katsikis PD, Storrs RW, Beaulieu C, Spielman D, Chen JY, Naumovski L, Tait JF. Quantitative analysis of apoptotic cell death using proton nuclear magnetic resonance spectroscopy. Blood 1997; 89: 37783786.
  • 23
    Barba I, Cabañas ME, Arús C. The relationship between nuclear magnetic resonance-visible lipids, lipid droplets, and cell proliferation in cultured C6 cells. Cancer Res 1999; 59: 18611868.
  • 24
    Holmes KT, Dyne M, Williams PG, May GL, Tripp E, Wright LC, Mountford CE. Vinblastine sensitivity of leukaemic lymphoblasts modulated by serum lipid. FEBS Lett 1989; 244: 103107.
  • 25
    Le Moyec L, Tatoud R, Degeorges A, Calabresse C, Bauza G, Eugène M, Calvo F. Proton nuclear magnetic resonance spectroscopy reveals cellular lipids involved in resistance to adriamycin and taxol by the K562 leukaemia cell line. Cancer Res 1996; 56: 34613467.
  • 26
    Cross KJ, Holmes KT, Mountford CE, Wright PE. Assignment of acyl chain resonances from membranes of mammalian cells by two-dimensional NMR methods. Biochemistry 1984; 23: 58955897.
  • 27
    Holmes KT, Mountford CE. Identification of triglyceride in malignant cell membranes. J Magn Reson 1991; 93: 407409.
  • 28
    May GL, Wright LC, Holmes KT, Williams PG, Smith ICP, Wright PE, Fox RM, Mountford CE. Assignment of methylene proton resonances in NMR spectra of embryonic and transformed cells to plasma membrane triglyceride. J Biol Chem 1986; 261: 30483053.
  • 29
    Williams PG, Helmer MA, Wright LC, Dyne M, Fox RM, Holmes KT, May GL, Mountford CE. Lipid domain in cancer cell plasma membrane shown by 1H NMR to be similar to a lipoprotein. FEBS Lett 1985; 192: 159164.
  • 30
    Callies R, Sri-Pathmanathan RM, Ferguson DY, Brindle KM. The appearance of neutral lipid signals in the 1H NMR spectra of a myeloma cell line correlates with the induced formation of cytoplasmic lipid droplets. Magn Reson Med 1993; 29: 546550.
  • 31
    Smith TAD, Eccles S, Ormerod MG, Tombs AJ, Titley JC, Leach MO. The phosphocholine and glycerophosphocholine content of an oestrogen-sensitive rat mammary tumour correlates strongly with growth rate. Brit J Cancer 1991; 64: 821826.
  • 32
    Negendank W, Li CW, Padavic-Shaller K, Murphy-Boesch J, Brown TR. Phospholipid metabolites in 1H-decoupled 31P MRS in vivo in human cancer: implications for experimental models and clinical studies. Anticancer Res 1996; 16: 15391544.
  • 33
    Daly PF, Cohen JS. Magnetic resonance spectroscopy of tumors and potential in vivo clinical applications: a review. Cancer Res 1989; 49: 770779.
  • 34
    Kuesel AC, Graschew G, Hull WE, Lorenz W, Thielmann HW. 31P NMR studies of cultured human tumor cells: influence of pH on phospholipid metabolite levels and the detection of cytidine 5′-diphosphate-choline. NMR Biomed 1990; 3: 7889.
  • 35
    Radda GK, Dixon RM, Wood CA. NMR studies of phospholipid metabolism and cell proliferation. Biochem Soc Trans 1991; 19: 995996.
  • 36
    Evenson DP, Lee J, Darzynkiewicz Z, Melamed MR. Rhodamine 123 alters the mitochondrial ultrastructure of cultured L1210 cells. J Histochem Cytochem 1985; 33: 353359.
  • 37
    Singer S, Neuringer LJ, Thilly WG, Chen LB. Quantitative differential effects of rhodamine 123 on normal cells and human colon cancer cells by magnetic resonance spectroscopy. Cancer Res 1993; 53: 58085814.