SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Wichlas F, Bail HJ, Seebauer CJ, Schilling R, Pflugmacher R, Pinkernelle J, Rump J, Streitparth F, Teichgraber UK. Development of a signal-inducing bone cement for magnetic resonance imaging. J Magn Reson Imaging 2010; 31: 636644.
  • 2
    Streitparth F, Walter T, Wonneberger U, Chopra S, Wichlas F, Wagner M, Hermann KG, Hamm B, Teichgraber U. Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features. Eur Radiol 2010; 20: 395403.
  • 3
    Fritz J, Henes JC, Thomas C, Clasen S, Fenchel M, Claussen CD, Lewin JS, Pereira PL. Diagnostic and interventional MRI of the sacroiliac joints using a 1.5-T open-bore magnet: a one-stop-shopping approach. AJR Am J Roentgenol 2008; 191: 17171724.
  • 4
    Fritz J, Thomas C, Clasen S, Claussen CD, Lewin JS, Pereira PL. Freehand real-time MRI-guided lumbar spinal injection procedures at 1.5 T: feasibility, accuracy, and safety. AJR Am J Roentgenol 2009; 192: W161W167.
  • 5
    Ishiwata Y, Takada H, Gondo G, Osano S, Hashimoto T, Yamamoto I. Magnetic resonance-guided percutaneous laser disk decompression for lumbar disk herniation—relationship between clinical results and location of needle tip. Surg Neurol 2007; 68: 159163.
  • 6
    Sequeiros RB, Klemola R, Ojala R, Jyrkinen L, Vaara T, Tervonen O. Percutaneous MR-guided discography in a low-field system using optical instrument tracking: a feasibility study. J Magn Reson Imaging 2003; 17: 214219.
  • 7
    Sequeiros RB, Ojala RO, Klemola R, Vaara TJ, Jyrkinen L, Tervonen OA. MRI-guided periradicular nerve root infiltration therapy in low-field (0.23-T) MRI system using optical instrument tracking. Eur Radiol 2002; 12: 13311337.
  • 8
    Melzer A, Seibel R. MRI-guided treatment of degenerative spinal diseases. Minim Invasive Ther Allied Technol 1999; 8: 327335.
  • 9
    Hailey D. Open magnetic resonance imaging (MRI) scanners. Issues Emerg Health Technol 2006; 92: 14.
  • 10
    Staubert A, Pastyr O, Echner G, Oppelt A, Vetter T, Schlegel W, Bonsanto MM, Tronnier VM, Kunze S, Wirtz CR. An integrated head-holder/coil for intraoperative MRI in open neurosurgery. J Magn Reson Imaging 2000; 11: 564567.
  • 11
    White CA, Konyer NB, Kucharczyk W, Bernstein M, Bronskill MJ. Improved coil designs for neurosurgical guidance with open-concept MR systems. In: Proceedings of the International Society of Magnetic Resonance in Medicine, Denver, CO; 2000.
  • 12
    de Bucourt M, Streitparth F, Collettini F, Guettler F, Rathke H, Lorenz B, Rump J, Hamm B, Teichgraber UK. Minimally invasive magnetic resonance imaging-guided free-hand aspiration of symptomatic nerve route compressing lumbosacral cysts using a 1.0-Tesla open magnetic resonance imaging system. Cardiovasc Intervent Radiol, in press; DOI 10.1007/s00270-011-0120-3.
  • 13
    Streitparth F, Hartwig T, Schnackenburg B, Strube P, Putzier M, Chopra S, De Bucourt M, Hamm B, Teichgraber U. MR-guided discography using an open 1 Tesla MRI system. Eur Radiol 2010; 21: 10431049.
  • 14
    Kumar A, Bottomley PA. Optimized quadrature surface coil designs. MAGMA 2008; 21: 4152.
  • 15
    Siebert W. Percutaneous nucleotomy procedures in lumbar intervertebral disk displacement. Current status. Orthopade 1999; 28: 598608.
  • 16
    Hoult DI, Chen CN, Sank VJ. Quadrature detection in the laboratory frame. Magn Reson Med 1984; 1: 339353.
  • 17
    Hyde JS, Jesmanowicz A, Grist TM, Froncisz W, Kneeland JB. Quadrature detection surface coil. Magn Reson Med 1987; 4: 179184.
  • 18
    Redpath TW. Quadrature rf coil pairs. Magn Reson Med 1986; 3: 118119.
  • 19
    Ouhlous M, Moelker A, Flick HJ, Wielopolski PA, de Weert TT, Pattynama PM, van der Lugt A. Quadrature coil design for high-resolution carotid artery imaging scores better than a dual phased-array coil design with the same volume coverage. J Magn Reson Imaging 2007; 25: 10791084.
  • 20
    Larson BT, Erdman AG, Tsekos NV, Yacoub E, Tsekos PV, Koutlas IG. Design of an MRI-compatible robotic stereotactic device for minimally invasive interventions in the breast. J Biomech Eng 2004; 126: 458465.
  • 21
    Zangos S, Vetter T, Huebner F, Tuwari M, Mayer F, Eichler K, Hansmann ML, Wetter A, Herzog C, Vogl TJ. MR-guided biopsies with a newly designed cordless coil in an open low-field system: initial findings. Eur Radiol 2006; 16: 20442050.
  • 22
    Meeuwis C, Peters NH, Mali WP, Gallardo AM, van Hillegersberg R, Schipper ME, van den Bosch MA. Targeting difficult accessible breast lesions: MRI-guided needle localization using a freehand technique in a 3.0 T closed bore magnet. Eur J Radiol 2007; 62: 283288.
  • 23
    Philpotts LE. MR intervention: indications, technique, correlation and histologic. Magn Reson Imaging Clin N Am 2010; 18: 323332.
  • 24
    Viehweg P, Bernerth T, Heinig A, Kiechle M, Buchmann J, Koelbl H, Laniado M, Helen Heywang-Kobrunner S. MR-guided intervention in women at high hereditary risk of breast cancer due to both family and personal history of breast cancer. Breast J 2006; 12: 549558.
  • 25
    de Bucourt M, Streitparth F, Wonneberger U, Rump J, Teichgraber U. Obese patients in an open MRI at 1.0 Tesla: image quality, diagnostic impact and feasibility. Eur Radiol 2011; 21: 10041015.
  • 26
    Lewin JS, Duerk JL, Jain VR, Petersilge CA, Chao CP, Haaga JR. Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. AJR Am J Roentgenol 1996; 166: 13371345.