• SAR prediction;
  • SAR validation;
  • radiofrequency patient safety;
  • parallel radiofrequency transmission


The specific absorption rate (SAR) is a limiting factor in high-field MR. SAR estimation is typically performed by numerical simulations using generic human body models. However, SAR concepts for single-channel radiofrequency transmission cannot be directly applied to multichannel systems. In this study, a novel and comprehensive SAR prediction concept for parallel radiofrequency transmission MRI is presented, based on precalculated magnetic and electric fields obtained from electromagnetic simulations of numerical body models. The application of so-called Q-matrices and further computational optimizations allow for a real-time estimation of the SAR prior to scanning. This SAR estimation method was fully integrated into an eight-channel whole body MRI system, and it facilitated the selection of different body models and body positions. Experimental validation of the global SAR in phantoms demonstrated a good qualitative and quantitative agreement with the predictions. An initial in vivo validation showed good qualitative agreement between simulated and measured amplitude of (excitation) radiofrequency field. The feasibility and practicability of this SAR prediction concept was shown paving the way for safe parallel radiofrequency transmission in high-field MR. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.