Wideband MR elastography for viscoelasticity model identification


Department of Mechanical and Industrial Engineering University of Illinois at Chicago, 842 W Taylor St. MC 251, Chicago, IL 60607. E-mail: tyasar2@uic.edu


The growing clinical use of MR elastography requires the development of new quantitative standards for measuring tissue stiffness. Here, we examine a soft tissue mimicking phantom material (Ecoflex) over a wide frequency range (200 Hz to 7.75 kHz). The recorded data are fit to a cohort of viscoelastic models of varying complexity (integer and fractional order). This was accomplished using multiple sample sizes by employing geometric focusing of the shear wave front to compensate for the changes in wavelength and attenuation over this broad range of frequencies. The simple axisymmetric geometry and shear wave front of this experiment allows us to calculate the frequency-dependent complex-valued shear modulus of the material. The data were fit to several common models of linear viscoelasticity, including those with fractional derivative operators, and we identified the best possible matches over both a limited frequency band (often used in clinical studies) and over the entire frequency span considered. In addition to demonstrating the superior capability of the fractional order viscoelastic models, this study highlights the advantages of measuring the complex-valued shear modulus over as wide a range of frequencies as possible. Magn Reson Med 70:479–489, 2013. © 2012 Wiley Periodicals, Inc.