SEARCH

SEARCH BY CITATION

Keywords:

  • adiabatic;
  • Shinnar Le-Roux;
  • RF excitation;
  • STABLE;
  • slice-selective;
  • off-resonance;
  • B1-insensitive;
  • fat suppression

Purpose

The purpose of this work is to design an improved Slice-selective Tunable-flip AdiaBatic Low peak-power Excitation (STABLE) pulse with shorter duration and increased off-resonance immunity to make it suitable for use in a greater range of applications and at higher field strengths. An additional aim is to design a variant of this pulse to achieve B1-insensitive, fat-suppressed excitation.

Methods

The adiabatic SLR algorithm was used to generate a more uniform spectral pulse envelope for this improved radiofrequency pulse for adiabatic slice-selective excitation, called STABLE-2. Pulse parameters were adjusted to design a version of STABLE-2 with a spectral null centered on lipids.

Results

In vivo images obtained of the human brain at 3 and 7 T demonstrate that STABLE-2 provides robust, uniform, slice-selective excitation over a range of B1 values. Phantom and in vivo knee images obtained at 3 T demonstrate the effectiveness of STABLE-2 for fat suppression.

Conclusions

STABLE-2 achieves B1-insensitive slice-selective excitation while providing greater off-resonance immunity and a shorter pulse duration, when compared to the original STABLE pulse. In particular, the 9.8-ms STABLE-2 pulse provides slice selectivity over 120 Hz whereas the 21-ms STABLE pulse is limited to 80 Hz off-resonance. B1-Insensitive fat-suppressed excitation may also be achieved by using a variant of this pulse. Magn Reson Med 71:75–82, 2014. © 2013 Wiley Periodicals, Inc.