The evolution of pore pressure fields around standard and ball penetrometers: influence of penetration rate


Correspondence to: Derek Elsworth, Energy and Mineral Engineering and Energy Institute, Penn State University, University Park, PA 16802, U.S.A.



Rate effects are examined in the steady pore pressure distribution induced as a result of penetration of standard and ball penetrometers. The incompressible flow field, which develops around the penetrometer is used to define the approximate soil velocity field local to the penetrometer tip. This prescribes the Lagrangian framework for the migration of the fluid saturated porous medium, defining the advection of induced pore pressures relative to the pressure-monitoring locations present on the probe face. In two separate approaches, different source functions are used to define the undrained pore fluid pressures developed either (i) on the face of the penetrometer or (ii) in the material comprising the failure zone surrounding the penetrometer tip. In the first, the sources applied at the tip face balance the volume of fluid mobilized by the piston displacement of the advancing penetrometer. Alternately, a fluid source distribution is evaluated from plasticity solutions and distributed throughout the tip process zone: for a standard penetrometer, the solution is for the expansion of a spherical cavity, and for the ball penetrometer, the solution is an elastic distribution of stresses conditioned by the limit load embedded within an infinite medium. For the standard penetrometer, the transition from drained to undrained behavior occurs over about two orders of magnitude in penetration rate for pore pressures recorded at the tip (U1) and about two-and-a-half orders of magnitude for the shoulder (U2). This response is strongly influenced by the rigidity of the soil and slightly influenced by the model linking induced total stresses to pore pressures. For the ball penetrometer, the transition from drained to undrained behavior also transits two-and-a-half orders of magnitude in penetration rate, although it is offset to higher dimensionless penetration rates than for standard penetration. Copyright © 2012 John Wiley & Sons, Ltd.