Dominant grains network and behavior of sand–silt mixtures: stress–strain modeling

Authors


Correspondence to: Ching S. Chang, 30 Marston Hall, University of Massachusetts, Amherst, MA 01003, U.S.A.

E-mail: chang@ecs.umass.edu

SUMMARY

Stress–strain modeling of sand–silt mixtures is important in the analysis and design of earth structures. In this paper, we develop a stress–strain model that can predict the behavior of sand–silt mixtures with any amount of fines content. This model is based on a micromechanics approach, which involves mean-field assumptions. For the mixtures with low amount of fines, the mechanical behavior is dominated by sand grains network. On the other hand, for the mixtures with high amount of fines, the mechanical behavior is dominated by silt grains network. Using this concept of dominant grains network, the behavior of mixtures with any amount of fines can be predicted from knowing the behavior of sand and silt, alone. We also modeled the critical state friction angle, critical state void ratio, and elastic stiffness for the mixtures as a function of fines content. The applicability of this developed stress–strain model is shown by comparing the simulated and measured results for two different types of sand–silt mixtures with full range of fines content. Copyright © 2012 John Wiley & Sons, Ltd.

Ancillary