Simulation of earthquake-induced slope deformation using SPH method

Authors

  • Wei Chen,

    1. 2H Offshore Inc., Houston, TX, U.S.A.
    2. Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, U.S.A.
    Search for more papers by this author
  • Tong Qiu

    Corresponding author
    1. Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, U.S.A.
    • Correspondence to: T. Qiu, Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, U.S.A. †E-mail: tqiu@engr.psu.edu

    Search for more papers by this author

SUMMARY

This paper presents the development, calibration, and validation of a smoothed particle hydrodynamics (SPH) model for the simulation of seismically induced slope deformation under undrained condition. A constitutive model that combines the isotropic strain softening viscoplasticity and the modified Kondner and Zelasko rule is developed and implemented into SPH formulations. The developed SPH model accounts for the effects of wave propagation in the sliding mass, cyclic nonlinear behavior of soil, and progressive reduction in shear strength during sliding, which are not explicitly considered in various Newmark-type analyses widely used in the current research and practice in geotechnical earthquake engineering. Soil parameters needed for the developed model can be calibrated using typical laboratory shear strength tests, and experimental or empirical shear modulus reduction curve and damping curve. The strain-rate effects on soil strength are considered. The developed SPH model is validated against a readily available and well-documented model slope test on a shaking table. The model simulated slope failure mode, acceleration response spectra, and slope deformations are in excellent agreement with the experimental data. It is thus suggested that the developed SPH model may be utilized to reliably simulate earthquake-induced slope deformations. This paper also indicates that if implemented with appropriate constitutive models, SPH method can be used to model large-deformation problems with high fidelity. Copyright © 2013 John Wiley & Sons, Ltd.

Ancillary