SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Ishihara K, Towhata I. Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils and Foundations 1983; 23(4):1126.
  • 2
    Roscoe K, Bassett R, Cole E. Principal axes observed during simple shear of a sand. Proc. Geotech. Conf., Oslo, 1967; 231237.
  • 3
    Drescher A, de Josselin de Jong G. Photoelastic verification of a mechanical model for the flow of a granular material. Journal of the Mechanics and Physics of Solids 1972; 20(5):337351.
  • 4
    Oda M, Konishi J. Rotation of principal stresses in granular material during simple shear. Soils and Foundations 1974; 14(4):3953.
  • 5
    Arthur J, Chua K, Dunstan T. Induced anisotropy in a sand. Geotechnique 1977; 27(1):1330.
  • 6
    Arthur J, Dunstan T, Al-Ani Q, Assadi A. Plastic deformation and failure in granular media. Geotechnique 1977; 27(1):5374.
  • 7
    Arthur JRF, Rodriguez del CJI, Dunstan T, Chua KS. Principal stress rotation: a missing parameter. Journal of the Geotechnical Engineering Division 1980; 106(4):419433.
  • 8
    Airey DW, Budhu M, Muir-Wood D. Some aspects of the behaviour of soils in simple shear. In Developments in Soil Mechanics and Foundation Engineering, Banerjee PK, Butterfield R (eds.). Elsevier Applied Science Publishers: New York, USA, 1985; 185213.
  • 9
    Miura K, Miura S, Toki S. Deformation behavior of anisotropic dense sand under principal stress axes rotation. Soils and Foundations 1986; 26(1):3652.
  • 10
    Gutierrez M, Ishihara K, Towhata I. Flow theory for sand during rotation of principal stress direction. Soils and Foundations 1991; 31(4):121132.
  • 11
    Gutierrez M, Ishihara K. Non-coaxiality and energy dissipation in granular materials. Soils and Foundations 2000; 40(2):4959.
  • 12
    Hill R. The Mathematical Theory of Plasticity. University Press: Oxford, 1950.
  • 13
    Yu HS. Plasticity and geotechnics. Springer: New York, 2006.
  • 14
    Yu H, Yuan X. The importance of accounting for non-coaxial behavior in modeling soil–structure interaction. Issue Paper, Proceedings of IACMAG11, 2005; 709718.
  • 15
    Yang Y, Ooi J, Rotter M, Wang Y. Numerical analysis of silo behaviour using non-coaxial models. Chemical Engineering Science 2011; 66(8):17151727.
  • 16
    Yu HS. Non-coaxial theories of plasticity for granular materials. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, 2008.
  • 17
    Hight D, Gens A, Symes M. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils. Geotechnique 1983; 33(4):355383.
  • 18
    Matsuoka H, Sakakibara K. A constitutive model for sands and clays evaluating principal stress rotation. Soils and Foundations 1987; 27(4):7388.
  • 19
    Joer H, Lanier J, Desrues J, Flavigny E. ‘1γ2ϵ’: a new shear apparatus to study the behavior of granular materials. ASTM geotechnical testing journal 1992; 15(2):129137.
  • 20
    Airey D, Wood DM. An evaluation of direct simple shear tests on clay. Geotechnique 1987; 37(1):2535.
  • 21
    Arthur JRF, Koenders M, Wong RKS. Anisotropy in particle contacts associated with shearing in granular media. Acta mechanica 1986; 64(1):1929.
  • 22
    Thornton C, Zhang L. A numerical examination of shear banding and simple shear non-coaxial flow rules. Philosophical Magazine 2006; 86(21–22):34253452.
  • 23
    Li X, Yu HS. Numerical investigation of granular material behaviour under rotational shear. Geotechnique 2010; 60(5):381394.
  • 24
    Yu H, Yuan X. On a class of non-coaxial plasticity models for granular soils. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 2006; 462(2067):725748.
  • 25
    Yang Y, Yu H. A non-coaxial critical state soil model and its application to simple shear simulations. International Journal for Numerical and Analytical Methods in Geomechanics 2006; 30(13):13691390.
  • 26
    Yang Y, Yu H. Numerical simulations of simple shear with non-coaxial soil models. International Journal for Numerical and Analytical Methods in Geomechanics 2006; 30(1):119.
  • 27
    GDR MiDi. On dense granular flows. European Physical Journal E: Soft Matter and Biological Physics 2004; 14(4):341365.
  • 28
    Shen HH, Sankaran B. Internal length and time scales in a simple shear granular flow. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 2004; 70(5):051308.
  • 29
    da Cruz F, Emam S, Prochnow M, Roux JN, Chevoir F. Rheophysics of dense granular materials: Discrete simulation of plane shear flows. Physical Review E 2005; 72(2):021309.
  • 30
    Sun J, Sundaresan S. A constitutive model with microstructure evolution for flow of rate-independent granular materials. Journal of Fluid Mechanics 2011; 682:590616.
  • 31
    Jiang M, Yu HS. Application of Discrete Element Method to Geomechanics. In Modern Trends in Geomechanics. W. Wu and H.-S. Yu (eds.), Springer: Berlin Heidelberg, 2006; 106:241269.
  • 32
    El Shamy U, Gröger T. Micromechanical aspects of the shear strength of wet granular soils. International Journal for Numerical and Analytical Methods in Geomechanics 2008; 32(14):17631790.
  • 33
    Katagiri J, Matsushima T, Yamada Y. Simple shear simulation of 3D irregularly-shaped particles by image-based DEM. Granular Matter 2010; 12(5):491497.
  • 34
    Wang J, Yu H, Langston P, Fraige F. Particle shape effects in discrete element modelling of cohesive angular particles. Granular Matter 2011; 13(1):112.
  • 35
    Zhang L. The behaviour of granular materials in pure shear, direct shear and simple shear. Aston University, Birmingham, UK, PhD, 2003.
  • 36
    Wang J. Mechanical behaviour of granular materials in simple shear test using DEM. School of Civil Engineering, University of Nottingham, Nottingham, UK, PhD, 2009.
  • 37
    Iwashita K, Oda M. Rolling resistance at contacts in simulation of shear band development by DEM. Journal of Engineering Mechanics 1998; 124(3):285292.
  • 38
    Mohamed A, Gutierrez M. Comprehensive study of the effects of rolling resistance on the stress–strain and strain localization behavior of granular materials. Granular Matter 2010; 12(5):527541.
  • 39
    Ai J, Chen JF, Rotter JM, Ooi JY. Assessment of rolling resistance models in discrete element simulations. Powder Technology 2011; 206:269282.
  • 40
    Estrada N, Azéma E, Radjai F, Taboada A. Identification of rolling resistance as a shape parameter in sheared granular media. Physical Review E 2011; 84(1):011306.
  • 41
    Wensrich C, Katterfeld A. Rolling friction as a technique for modelling particle shape in DEM. Powder Technology 2011; 217:409417.
  • 42
    Cundall PA, Strack ODL. Discrete numerical model for granular assemblies. Geotechnique 1979; 29(1):4765.
  • 43
    Itasca. Manual of Particle Flow Code (PFC2D/3D). Itasca Consulting Group, 2008.
  • 44
    Budhu M, Britto A. Numerical analysis of soils in simple shear devices. Soils and Foundations 1987; 27(2):3141.
  • 45
    Dounias G, Potts D. Numerical analysis of drained direct and simple shear tests. Journal of Geotechnical Engineering 1993; 119(12).
  • 46
    Doherty J, Fahey M. Three-dimensional finite element analysis of the direct simple shear test. Computers and Geotechnics 2011; 38(7):917924.
  • 47
    Li X, Yu H-S, Li X-S. A virtual experiment technique on the elementary behaviour of granular materials with discrete element method. International Journal for Numerical and Analytical Methods in Geomechanics 2013; 37(1):7596.
  • 48
    Thornton C. Numerical simulations of deviatoric shear deformation of granular media. Geotechnique 2000; 50(1):4353.
  • 49
    Cheung G, O'Sullivan C. Effective simulation of flexible lateral boundaries in two- and three-dimensional DEM simulations. Particuology 2008; 6(6):483500.
  • 50
    Cundall PA, Drescher A, Strack ODL. Numerical experiments on granular assemblies: measurements and observations, 1982; 355370.
  • 51
    Thornton C, Antony SJ. Quasi-static shear deformation of a soft particle system. Powder Technology 2000; 109(1–3):179.
  • 52
    Suiker ASJ, Fleck NA. Frictional collapse of granular assemblies. Journal of Applied Mechanics 2004; 71:350358.
  • 53
    Bolton M. The strength and dilatancy of sands. Geotechnique 1986; 36(1):6578.
  • 54
    Rothenburg L, Bathurst R. Analytical study of induced anisotropy in idealized granular materials. Geotechnique 1989; 39(4):601614.
  • 55
    Kanatani K-I. Distribution of directional data and fabric tensors. International Journal of Engineering Science 1984; 22(2):149164.
  • 56
    Azéma E, Radjaï F, Peyroux R, Saussine G. Force transmission in a packing of pentagonal particles. Physical Review E 2007; 76(1):011301.