Get access

What is the role for biomarkers for lower urinary tract disorders? ICI-RS 2013

Authors


  • Conflict of interest:
  • Christopher Chapple led the peer-review process as the Associate Editor responsible for the paper.

Abstract

Aims

A biomarker is an entity that measures a normal or pathological process, or the response to an intervention. A biomarker must measure exclusively and be sufficiently sensitive to the process of interest. Alternatively, a biomarker may give clues regarding the underlying pathology of the condition and be a useful research or specialist tool. If a biomarker is to be of practical benefit then it must also be economical and practical to use. This article will consider chemical moieties as biomarkers, although in principle physical markers (e.g., bladder wall thickness) could also be defined as such.

Results and Conclusions

The validation of a biomarker for detrusor overactivity (DO) must appreciate the fact that the condition is likely to multifactorial and thus no single entity may be sufficiently selective and sensitive. However, more specific conditions, such as bladder pain associated with DO, may make the biomarker search easier. Several prospective agents including antiproliferative factor (APF) and epidermal growth factors (EGF) are discussed. Several urinary biomarkers, including neurotrophins (NGF, BDNF) and cytokines, and a serum marker, C-reactive protein, are considered as reaching the above criteria. All suffer from relatively poor lack of discrimination, as they all change in response to other, often inflammatory, conditions; BDNF may offer the highest expectations. Urinary ATP has also been proposed as a DO/OAB biomarker but requires further evaluation. Finally genetic markers offer potential to understand more about the pathophysiology of DO/OAB. The increasing availability of genome-wide association studies and micro-RNA assays offer genetic markers as a new generation of biomarkers. Neurourol. Urodynam. 33:602–605, 2014. © 2014 Wiley Periodicals, Inc.

Get access to the full text of this article

Ancillary