Get access

Pelvic floor muscle activation and strength components influencing female urinary continence and stress incontinence: A systematic review


  • Heinz Koelbl led the peer-review process as the Associate Editor responsible for the paper.
  • Conflict of interest: none.



A better understanding of pelvic floor muscle (PFM) activation and strength components is a prerequisite to get better insight in PFM contraction mechanisms and develop more specific PFM-training regimens for female stress urinary incontinence (SUI) patients. The aim of this systematic review (2012:CRD42012002547) was to evaluate and summarize existing studies investigating PFM activation and strength components influencing female continence and SUI.


PubMed, EMBASE, and Cochrane databases were systematically searched for literature from January 1980 to November 2013 for cross-sectional studies comparing female SUI patients with healthy controls and intervention studies with SUI patients reporting on the association between PFM activation and strength components and urine loss. Trial characteristics, evaluated PFM components, their definitions, measurement methods, study outcomes, as well as quality measures, based on the Cochrane risk of bias tool, were independently extracted. The high heterogeneity of the retrieved data made pooling of results impossible and therefore restricted the analysis to a systematic review.


Cross-sectional studies showed group differences in favor of the continent women compared to SUI patients for PFM activation or PFM maximal strength, mean strength or sustained contraction. All intervention studies showed an improvement of PFM strength and decrease in urine loss in SUI patients after physical therapy.


Higher PFM activation and strength components influence female continence positively. This systematic review underscored the need for a standardized PFM components' terminology (similar to rehabilitation and training science), standardized test procedures and well matched diagnostic instruments. Neurourol. Urodynam. 34:498–506, 2015. © 2014 Wiley Periodicals, Inc.

Get access to the full text of this article