• approximation algorithms;
  • approximation hardness;
  • min-max path cover;
  • vehicle routing


This article studies a min-max path cover problem, which is to determine a set of paths for k capacitated vehicles to service all the customers in a given weighted graph so that the largest path cost is minimized. The problem has wide applications in vehicle routing, especially when the minimization of the latest service completion time is a critical performance measure. We have analyzed four typical variants of this problem, where the vehicles have either unlimited or limited capacities, and they start from either a given depot or any depot of a given depot set. We have developed approximation algorithms for these four variants, which achieve approximation ratios of max{3 - 2/k,2}, 5, max{5 - 2/k,4}, and 7, respectively. We have also analyzed the approximation hardness of these variants by showing that, unless P = NP, it is impossible for them to achieve approximation ratios less than 4/3, 3/2, 3/2, and 2, respectively. We have further extended the techniques and results developed for this problem to other min-max vehicle routing problems.© 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010