A spatial rank-based multivariate EWMA control chart

Authors

  • Changliang Zou,

    1. LPMC and Department of Statistics, School of Mathematical Sciences, Nankai University, Tianjin, China
    Search for more papers by this author
  • Zhaojun Wang,

    1. LPMC and Department of Statistics, School of Mathematical Sciences, Nankai University, Tianjin, China
    Search for more papers by this author
  • Fugee Tsung

    Corresponding author
    1. Department of Industrial Engineering and Logistics Management, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
    • Department of Industrial Engineering and Logistics Management, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
    Search for more papers by this author

Abstract

Nonparametric control charts are useful in statistical process control when there is a lack of or limited knowledge about the underlying process distribution, especially when the process measurement is multivariate. This article develops a new multivariate self-starting methodology for monitoring location parameters. It is based on adapting the multivariate spatial rank to on-line sequential monitoring. The weighted version of the rank-based test is used to formulate the charting statistic by incorporating the exponentially weighted moving average control scheme. It is robust to non-normally distributed data, easy to construct, fast to compute and also very efficient in detecting multivariate process shifts, especially small or moderate shifts which occur when the process distribution is heavy-tailed or skewed. As it avoids the need for a lengthy data-gathering step before charting and it does not require knowledge of the underlying distribution, the proposed control chart is particularly useful in start-up or short-run situations. A real-data example from white wine production processes shows that it performs quite well. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 91–110, 2012

Ancillary