• 1
    Linde F. Elastic and viscoelastic properties of trabecular bone by a compression testing approach. Dan. Med. Bull. 1994; 41: 119138.
  • 2
    Bikle DD, Halloran BP, Morey-Holton E. Space flight and the skeleton: lessons for the earthbound. Endocrinologist 1997; 7: 1022.
  • 3
    Lindberg MK, Vandenput L, Moverare Skrtic S, Vanderschueren D, Boonen S, Bouillon R, Ohlsson C. Androgens and the skeleton. Minerva Endocrinol. 2005; 30: 1525.
  • 4
    Report W. Assessment of Fracture Risk and Its Application to screening for Postmenopausal Osteoporosis. World Health Organization: Geneva, 1994.
  • 5
    Melton LJ III. Epidemiology of spinal osteoporosis. Spine 1997; 22 (24 Suppl): 2S11S.
  • 6
    Kanis JA, Melton LJ III, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis [see comments]. J. Bone Miner. Res. 1994; 9: 11371141.
  • 7
    Hayes WC, Piazza SJ, Zysset PK. Biomechanics of Fracture risk prediction by quantitative computed tomography. Radiol. Clin. North Am. 1991; 29: 118.
  • 8
    Wehrli F, Saha P, Gomberg B, Song H, Snyder P, Benito M, Wright A, Weening R. Role of magnetic resonance for assessing structure and function of trabecular bone. Top. Magn. Reson. Imaging 2002; 13: 335355.
  • 9
    Guo XE, Kim CH. Mechanical consequence of trabecular bone loss and its treatment: a three-dimensional model simulation. Bone 2002; 30: 404411.
  • 10
    Kinney JH, Ryaby JT, Haupt DL, Lane NE. Three-dimensional in vivo morphometry of trabecular bone in the OVX rat model of osteoporosis. Technol. Health Care 1998; 6: 339350.
  • 11
    Chavassieux P, Arlot M, Meunier PJ. Clinical use of bone biopsy. In Osteoporosis, (Vol. 2), MarcusR, FeldmanD, KelseyJ (eds). Academic Press: New York, 2001; 501509.
  • 12
    ReckerRR (ed.). Bone Histomorphometry: Techniques and Interpretation. CRC Press: Boca Raton, FL, 1983.
  • 13
    Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P. Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest and calcaneus. J. Bone Miner. Res. 1999; 14: 11671174.
  • 14
    Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metab. 2005; 90: 65086515.
  • 15
    Khosla S, Riggs BL, Atkinson EJ, Oberg AL, McDaniel LJ, Holets M, Peterson JM, Melton LJ III. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based non-invasive in vivo assessment. J. Bone Miner. Res. 2006; 21: 124131.
  • 16
    Ito M, Ikeda K, Nishiguchi M, Shindo H, Uetani M, Hosoi T, Orimo H. Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J. Bone Miner. Res. 2005; 20: 18281836.
  • 17
    Wehrli FW. Trabecular bone imaging. In Magnetic Resonance Imaging and Spectroscopy in Medicine and Biology, (Vol. 2), YoungIR (ed.). Wiley: Chichester, 2000; 13561368.
  • 18
    Majumdar S. Magnetic resonance imaging of trabecular bone structure. Top. Magn. Reson. Imaging 2002; 13: 323334.
  • 19
    Wehrli FW, Saha PK, Gomberg BR, Song HK. Non-invasive assessment of bone architecture by magnetic resonance micro-imaging-based virtual bone biopsy. Proceedings of IEEE 2003; 91: 15201542.
  • 20
    Link TM, Majumdar S. Osteoporosis imaging. Radiol. Clin. North Am. 2003; 41: 813839.
  • 21
    Fernandez-Seara M, Wehrli SL, Wehrli FW. Multipoint mapping for imaging of semisolid materials. J. Magn. Reson. 2003; 160: 144150.
  • 22
    Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J. Comput. Assist. Tomogr. 2003; 27: 825846.
  • 23
    Gomberg BR, Saha PK, Wehrli FW. Method for cortical bone structural analysis from magnetic resonance images. Acad. Radiol. 2005; 12: 13201332.
  • 24
    Wehrli FW, Ford JC, Attie M, Kressel HY, Kaplan FS. Trabecular structure: preliminary application of MR interferometry. Radiology 1991; 179: 615621.
  • 25
    Majumdar S, Thomasson D, Shimakawa A, Genant HK. Quantitation of the susceptibility difference between trabecular bone and marrow: experimental studies. Magn. Reson. Med. 1991; 22: 111127.
  • 26
    Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn. Reson. Med. 1994; 32: 749763.
  • 27
    Machann J, Raible A, Schnatterbeck P, Lutz O, Claussen CD, Schick F. Osteodensitometry of human heel bones by MR spin-echo imaging: comparison with MR gradient-echo imaging and quantitative computed tomography. J. Magn. Reson. Imaging 2001; 14: 147155.
  • 28
    Fernandez-Seara MA, Song HK, Wehrli FW. Trabecular bone volume fraction mapping by low-resolution MRI. Magn. Reson. Med. 2001; 46: 103113.
  • 29
    Chin CL, Tang X, Bouchard LS, Saha PK, Warren WS, Wehrli FW. Isolating quantum coherences in structural imaging using intermolecular double-quantum coherence MRI. J. Magn. Reson. 2003; 165: 309314.
  • 30
    Bouchard LS, Wehrli FW, Chin CL, Warren WS. Structural anisotropy and internal magnetic fields in trabecular bone: coupling solution and solid dipolar interactions. J. Magn. Reson. 2005; 176: 2736.
  • 31
    Glasel J, Lee K. On the interpretation of water nuclear magnetic resonance relaxation times in heterogeneous systems. J. Am. Chem. Sociol. 1974; 96: 970978.
  • 32
    Davis CA, Genant HK, Dunham JS. The effects of bone on proton NMR relaxation times of surrrounding liquids. Invest. Radiol. 1986; 21: 472477.
  • 33
    Rosenthal H, Thulborn KR, Rosenthal DI, Kim SH, Rosen BR. Magnetic susceptibility effects of trabecular bone on magnetic resonance imaging of bone marrow. Invest. Radiol. 1990; 25: 173178.
  • 34
    Hopkins JA, Wehrli FW. Magnetic susceptibility measurement of insoluble solids by NMR: magnetic susceptibility of bone. Magn. Reson. Med. 1997; 37: 494500.
  • 35
    Lauterbur PC, Kaufman BV, Crawford MK. NMR studies of the protein-solute interface. In Biomolecular Structure and Function. Academic Press: New York, 1978; 329.
  • 36
    Morrish A. The Physical Principles of Magnetism. Robert E. Krieger: Malabar, FL, 1983.
  • 37
    Ford JC, Wehrli FW, Chung H. Magnetic field distribution in models of trabecular bone. Magn. Reson. Med. 1993; 30: 373379.
  • 38
    Gibson LJ. The mechanical behaviour of cancellous bone. J. Biomech. 1985; 18: 317328.
  • 39
    Hwang S, Wehrli F. The calculation of the susceptibility-induced magnetic field from 3d nmr images with applications to trabecular bone. J. Magn. Reson. B 1995; 109: 126145.
  • 40
    Chung H, Wehrli FW, Williams JL, Kugelmass SD. Relationship between NMR transverse relaxation, trabecular bone architecture and strength. Proceedings of the National Academy of Sciences. USA 1993; 90: 1025010254.
  • 41
    Hwang SN, Wehrli FW. Experimental evaluation of a surface charge method for computing the induced magnetic field in trabecular bone. J. Magn. Reson. 1999; 139: 3545.
  • 42
    Yablonskiy DA, Reinus WR, Haacke EM, Stark H. Quantitation of T2′ anisotropic effects on MR bone mineral density measurement. Magn. Reson. Med. 1996; 37: 214221.
  • 43
    Selby K, Majumdar S, Newitt DC, Genant HK. Investigation of MR decay rates in microphantom models of trabecular bone. J. Magn. Reson. Imaging 1996; 6: 549559.
  • 44
    Chung H, Wehrli FW. Tmath image and material anisotropy of cancellous bone. In Proc. New York, 1993; 138.
  • 45
    Majumdar S, Genant HK. In vivo relationship between marrow Tmath image and trabecular bone density determined with a chemical shift-selective asymmetric spin-echo sequence. J. Magn. Reson. Imaging 1992; 2: 209219.
  • 46
    Chung HW, Hwang SN, Yeung HN, Wehrli FW. Mapping of the magnetic-field distribution in cancellous bone. J. Magn. Reson. B 1996; 113: 172176.
  • 47
    Jergas M, Majumdar S, Keyak J, Lee I, Newitt D, Grampp S, Skinner H, Genant H. Relationship between Young modulus of elasticity, as h density and MRI derived effective transverse relaxation Tmath image in tibial specimens. J. Comput. Assist. Tomogr. 1995; 19: 472479.
  • 48
    Brismar TB, Hindmarsh T, Ringertz H. Experimental correlation between Tmath image and ultimate compressive strength in lumbar porcine vertebrae. Acad. Radiol. 1997; 4: 426430.
  • 49
    Wehrli FW, Perkins DG, Shimakawa A, Roberts F. Chemical shift-induced amplitude modulations in images obtained with gradient refocusing. Magn. Reson. Imaging 1987; 5: 157158.
  • 50
    Wehrli FW, Ma J, Hopkins JA, Song HK. Measurement of Rmath image in the presence of multiple spectral components using reference spectrum deconvolution. J. Magn. Reson. 1998; 131: 6168.
  • 51
    Wehrli FW, Ford JC, Haddad JG. Osteoporosis: clinical assessment with quantitative magnetic resonance imaging in diagnosis. Radiology 1995; 196: 631641.
  • 52
    Funke M, Bruhn H, Vosshenrich R, Rudolph O, Grabbe E. Bestimmung der Tmath image-Relaxationszeit zur Charakterisierung des trabekulären Knochens. Rofo. Fortschr. Geb. Rontgenstr. Neuen Bildgeb. Verfahr. 1994; 161: 5863.
  • 53
    Machann J, Schnatterbeck P, Raible A, Lutz O, Claussen CD, Schick F. Magnetic resonance osteodensitometry in human heel bones: correlation with quantitative computed tomography using different measuring parameters. Invest. Radiol. 2000; 35: 393400.
  • 54
    Ford JC, Wehrli FW. In-vivo quantitative characterization of trabecular bone by NMR interferometry and localized proton spectroscopy. Magn. Reson. Med. 1991; 17: 543551.
  • 55
    Schick F. Bone marrow NMR in vivo. Prog. Nucl. Magn. Reson. Spectrosc. 1996; 29: 169227.
  • 56
    Matsui S, Sekihara K, Kohno H. Spatially resolved NMR spectroscopy using phase-modulated spin-echo trains. J. Magn. Reson. 1986; 67: 476490.
  • 57
    Hilaire L, Wehrli FW, Song HK. High-speed spectroscopic imaging for cancellous bone marrow Rmath image mapping and lipid quantification. Magn. Reson. Imaging 2000; 18: 777786.
  • 58
    Ma J, Wehrli FW. Method for image-based measurement of the reversible and irreversible contribution to the transverse relaxation rate. J. Magn. Reson. B 1996; 111: 6169.
  • 59
    Song HK, Wehrli FW, Ma J. Field strength and angle dependence of trabecular bone marrow transverse relaxation in the calcaneus. J. Magn. Reson. Imaging 1997; 7: 382388.
  • 60
    Allein S, Majumdar S, De Bisschop E, Newitt DC, Luypaert R, Eisendrath H. In vivo comparison of MR phase distribution and 1/Tmath image with morphological parameters in the distal radius. J. Magn. Reson. Imaging 1997; 7: 389393.
  • 61
    Mihalopoulou E, Allein S, Luypaert R, Eisendrath H, Panayiotakis G. Computer simulations for the optimization of magnetic resonance phase imaging applied in the study of trabecular bone. Comput. Methods Programs Biomed. 1999; 60: 110.
  • 62
    Allein S, Mihalopoulou E, Luypaert R, Louis O, Panayiotakis G, Eisendrath H. MR phase imaging to quantify bone volume fraction: computer simulations and in vivo measurements. Magn. Reson. Imaging 2000; 18: 275279.
  • 63
    Kose K, Tomiha S. Compact MRI. Clin. Calcium 2004; 14: 6668.
  • 64
    Kose K, Matsuda Y, Kurimoto T, Hashimoto S, Yamazaki Y, Haishi T, Utsuzawa S, Yoshioka H, Okada S, Aoki M, Tsuzaki T. Development of a compact MRI system for trabecular bone volume fraction measurements. Magn. Reson. Med. 2004; 52: 440444.
  • 65
    Richter W, Warren WS. Intermolecular multiple quantum coherences in liquids. Concepts Magn. Reson. 2000; 12: 396409.
  • 66
    Bouchard LS, Rizi RR, Warren WS. Magnetization structure contrast based on intermolecular multiple-quantum coherences. Magn. Reson. Med. 2002; 48: 973979.
  • 67
    Capuani S, Alessandri FM, Bifone A, Maraviglia B. Multiple spin echoes for the evaluation of trabecular bone quality. MAGMA 2002; 14: 39.
  • 68
    Sugimoto H, Kimura T, Ohsawa T. Susceptibility effects of bone trabeculae. Quantification in vivo using an asymmetric spin-echo technique. Invest. Radiol. 1993; 28: 208213.
  • 69
    Ma J, Wehrli FW, Song HK, Hwang SN. A single-scan imaging technique for quantitation of the relative contents of fat and water protons and their transverse relaxation times. J. Magn. Reson. 1997; 125: 92101.
  • 70
    Wehrli FW, Hopkins JA, Hwang SN, Song HK, Snyder PJ, Haddad JG. Cross-sectional study of osteopenia by quantitative magnetic resonance and bone densitometry. Radiology 2000; 217: 527538.
  • 71
    Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with Bo inhomogeneity correction. Magn. Reson. Med. 1991; 18: 371383.
  • 72
    Machann J, Schick F, Seitz D, Duda SH, Straubinger K, Lutz O, Claussen CD. Osteodensitometry in yellow and red bone marrow using magnetic resonance – comparison with computed tomography. In Proceedings of the International Society for Magnetic Resonance in Medicine, Fourth Annual Meeting. New York, 1996; 1093.
  • 73
    Griffith JF, Yeung DK, Antonio GE, Lee FK, Hong AW, Wong SY, Lau EM, Leung PC. Vertebral bone mineral density, marrow perfusion and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 2005; 236: 945951.
  • 74
    Yeung DK, Griffith JF, Antonio GE, Lee FK, Woo J, Leung PC. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J. Magn. Reson. Imaging 2005; 22: 279285.
  • 75
    Link TM, Majumdar S, Augat P, Lin JC, Newitt D, Lane NE, Genant HK. Proximal femur: assessment for osteoporosis with Tmath image decay characteristics at MR imaging. Radiology 1998; 209: 531536.
  • 76
    Wehrli F, Hilaire L, Fernández-Seara M, Gomberg B, Song H, Zemel B, Loh L, Snyder P. Quantitative magnetic resonance imaging in the calcaneus and femur of women with varying degrees of osteopenia and vertebral deformity status. J. Bone Miner. Res. 2002; 17: 22652273.
  • 77
    Wang J, Reykowski A, Dickas J. Calculation of the signal-to-noise ratio for simple surface coils and arrays of coils. IEEE Trans. Biomed. Eng. 1995; 42: 908917.
  • 78
    HayesCE, EdelsteinWA, SchenckJF (eds). Radio Frequency Coils. American Institute of Physics: New York, 1985; 142165.
  • 79
    Wright AC, Song HK, Wehrli FW. In vivo MR micro imaging with conventional radiofrequency coils cooled to 77 K. Magn. Reson. Med. 1999; 43: 163169.
  • 80
    Wosik J, Xie L-M, Nesteruk K, Xue L, Bankson J, Hazle J. Superconducting single and phased-array probes for clinical and research MRI. IEEE Trans. Appl. Supercond. 2003; 13: 10501055.
  • 81
    Xue L, Xie L-M, Kamel M, Wosik J. SNR gain of cooled/superconductor array. In Proceedings of ISMRM, Kyoto, 2004; 1612.
  • 82
    Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur. Radiol. 2003; 13: 24092418.
  • 83
    Boutry N, Cortet B, Dubois P, Marchandise X, Cotten A. Trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosis. Radiology 2003; 227: 708717.
  • 84
    Chesnut CH III, Majumdar S, Newitt DC, Shields A, Van Pelt J, Laschansky E, Azria M, Kriegman A, Olson M, Eriksen EF, Mindeholm L. Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging: results from the QUEST study. J. Bone Miner. Res. 2005; 20: 15481561.
  • 85
    Banerjee S, Han ET, Krug R, Newitt DC, Majumdar S. Application of refocused steady-state free-precession methods at 1.5 and 3 T to in vivo high-resolution MRI of trabecular bone: simulations and experiments. J. Magn. Reson. Imaging 2005; 21: 818825.
  • 86
    Techawiboonwong A, Song H, Saha P, Wehrli F. Implications of pulse sequence in structural imaging of trabecular bone. J. Magn. Reson. Imaging 2005; 22: 647655.
  • 87
    Ma J, Wehrli FW, Song HK. Fast 3D large-angle spin-echo imaging (3D FLASE). Magn. Reson. Med. 1996; 35: 903910.
  • 88
    Song HK, Wehrli FW. In vivo micro-imaging using alternating navigator echoes with applications to cancellous bone structural analysis. Magn. Reson. Med. 1999; 41: 947953.
  • 89
    Vasilic B, Song H, Wehrli F. Coherence induced artifacts in large-flip-angle steady-state spin-echo imaging. Magn. Reson. Med. 2004; 52: 346353.
  • 90
    Jara H, Wehrli FW, Chung H. High-resolution variable flip angle 3D MR imaging of trabecular microstructure in vivo. Magn. Reson. Med. 1993; 29: 528539.
  • 91
    Haacke EM, Wielopolski PA, Tkach JA, Modic MT. Steady-state free precession imaging in the presence of motion: application for improved visualization of the cerebrospinal fluid. Radiology 1990; 175: 545552.
  • 92
    Bangerter NK, Hargreaves BA, Vasanawala SS, Pauly JM, Gold GE, Nishimura DG. Analysis of multiple-acquisition SSFP. Magn. Reson. Med. 2004; 51: 10381047.
  • 93
    Bogdan AR, Joseph PM. RASEE: a rapid spin-echo pulse sequence. Magn. Reson. Imaging 1990; 8: 1319.
  • 94
    Magland J, Vasilic B, Wehrli FW. Fast low-angle dual spin-echo (FLADE): a new robust pulse sequence for structural imaging of trabecular bone. Magn. Reson. Med. 2006; 65: 465471.
  • 95
    Gomberg BR, Wehrli FW, Vasilic B, Weening RH, Saha PK, Song HK, Wright AC. Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 2004; 35: 266276.
  • 96
    Atkinson D, Hill DLG, Stoyle PNR, Summers PE, Keevil SF. Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion. IEEE Trans. Med. Imaging 1997; 16: 903910.
  • 97
    Song HK, Wehrli FW. Comparison of different motion correction schemes for in vivo microimaging. In Proceedings of the International Society for Magnetic Resonance in Medicine. Philadelphia, PA, 1999; 2120.
  • 98
    Fu ZW, Wang Y, Grimm RC, Rossman PJ, Felmlee JP, Riederer SJ, Ehman RL. Orbital navigator echoes for motion measurements in magnetic resonance imaging. Magn. Reson. Med. 1995; 34: 746753.
  • 99
    Manduca A, McGee KP, Welch EB, Felmlee JP, Grimm RC, Ehman RL. Autocorrection in MR imaging: adaptive motion correction without navigator echoes. Radiology 2000; 215: 904909.
  • 100
    Lin W, Ladinsky GA, Wehrli FW, Song HK. Combined rotational/translational motion correction using autofocusing for high-resolution trabecular bone images. Proceedings of ISMRM 14th Scientific Meeting 2006; 340.
  • 101
    Newitt DC, van Rietbergen B, Majumdar S. Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos. Int. 2002; 13: 278287.
  • 102
    Vasilic B, Wehrli FW. Semi-automated algorithm for segmentation of the trabecular-bone region in micro-MR images of the distal radius and tibia. In Proceedings of ISMRM, Miami, FL, 2005; 1992.
  • 103
    Vasilic B, Popescu AM, Bunker B, Wehrli FW. Semi-automatic method for 3D registration of trabecular bone images in serial studies. In Proceedings of ISMRM, Kyoto, 2004; 2209.
  • 104
    Studholme C, Hill DL, Hawkes DJ. Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Med. Phys. 1997; 24: 2535.
  • 105
    Chung HW, Wehrli FW, Williams JL, Kugelmass SD, Wehrli SL. Quantitative analysis of trabecular microstructure by 400 MHz nuclear magnetic resonance imaging. J. Bone Miner. Res. 1995; 10: 803811.
  • 106
    Hwang SN, Wehrli FW. Estimating voxel volume fractions of trabecular bone on the basis of magnetic resonance images acquired in vivo. Int. J. Imaging Syst. Technol. 1999; 10: 186198.
  • 107
    Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn. Reson. Med. 1995; 34: 910914.
  • 108
    Hwang SN, Wehrli FW. A fast method for estimating voxel bone volume fractions from in vivo high-resolution MR images. In Proceedings of ISMRM. Glasgow, 2001; 844.
  • 109
    Vasilic B, Wehrli FW. A novel local thresholding algorithm for trabecular bone volume fraction mapping in the limited spatial resolution regime of in-vivo MRI. IEEE. Trans. Med. Imaging 2005; 24: 15741585.
  • 110
    Hwang SN, Wehrli FW. Subvoxel processing: a method for reducing partial volume blurring with application to in vivo MR images of trabecular bone. Magn. Reson. Med. 2002; 47: 948957.
  • 111
    Raux P, Townsend PR, Miegel R, Rose RM, Radis EL. Trabecular architecture of the human patella. J. Biomech. 1975; 8: 17.
  • 112
    Whitehouse WJ. The quantitative morphology of anisotropic trabecular bone. J. Microsc. 1974; 101: 153168.
  • 113
    Underwood EE. Quantitative Stereology. Addison-Wesley: Reading, MA, 1970.
  • 114
    Parfitt AM, Mathews CHE, Villanueva AR, Kleerekoper M, Frame B, Rao DS. Relationships between surface, volume and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J. Clin. Invest. 1983; 72: 13961409.
  • 115
    Kleerekoper M, Villanueva AR, Stanciu J, Sudhaker Rao D, Parfitt AM. The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif. Tissue Int. 1985; 37: 594597.
  • 116
    Majumdar S, Newitt D, Jergas M, Gies A, Chiu E, Osman D, Keltner J, Keyak J, Genant H. Evaluation of technical factors affecting the quantification of trabecular bone structure using magnetic resonance imaging. Bone 1995; 17: 417430.
  • 117
    Amling M, Posl M, Ritzel H, Hahn M, Vogel M, Wening VJ, Delling G. Architecture and distribution of cancellous bone yield vertebral fracture clues. A histomorphometric analysis of the complete spinal column from 40 autopsy specimens. Arch. Orthop. Trauma Surg. 1996; 115: 262269.
  • 118
    Vesterby A. Star volume of marrow space and trabeculae in iliac crest: sampling procedure and correlation to star volume of first lumbar vertebra. Bone 1990; 11: 149155.
  • 119
    Hahn M, Vogel M, Pompesius-Kempa M, Delling G. Trabecular bone pattern factor – a new parameter for simple quantification of bone microarchitecture. Bone 1992; 13: 327330.
  • 120
    Mellish RW, Ferguson-Pell MW, Cochran GV, Lindsay R, Dempster DW. A new manual method for assessing two-dimensional cancellous bone structure: comparison between iliac crest and lumbar vertebra. J. Bone Miner. Res. 1991; 6: 689696.
  • 121
    Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J. Bone Miner. Res. 1989; 4: 311.
  • 122
    Goldstein SA, Goulet R, McCubbrey D. Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif. Tissue Int. 1993; 53: S127S133.
  • 123
    Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA. The relationship between the structural and orthogonal compressive properties of trabecular bone. J. Biomech. 1994; 27: 375389.
  • 124
    Hildebrand T, Rüegsegger P. Quantification of bone microarchitecture with the structure model index. Comput. Methods Biomech. Biomed. Eng. 1997; 1: 1523.
  • 125
    Hwang SN, Wehrli FW, Williams JL. Probability-based structural parameters from 3D NMR images as predictors of trabecular bone strength. Med. Phys. 1997; 24: 12551261.
  • 126
    Rotter M, Berg A, Langenberger H, Grampp S, Imhof H, Moser E. Autocorrelation analysis of bone structure. J. Magn. Reson. Imaging 2001; 14: 8793.
  • 127
    Wehrli FW, Hwang SN, Ma J, Song HK, Ford JC, Haddad JG. Cancellous bone volume and structure in the forearm: non-invasive assessment with MR microimaging and image processing [published erratum appears in Radiology 1998; 207: 833]. Radiology 1998; 206: 347357.
  • 128
    Maunder CRF. Algebraic Topology. Cambridge University Press: Cambridge, 1980.
  • 129
    Saha P, Wehrli F. Measurement of trabecular bone thickness in the limited resolution regime of in vivo MRI by fuzzy distance transform. IEEE Trans. Med. Imaging 2004; 23: 5362.
  • 130
    Aaron JE, Francis RM, Peacock M, Makins NB. Contrasting microanatomy of idiopathic and corticosteroid-induced osteoporosis. Clin. Orthop. Relat. Res. 1989; 294305.
  • 131
    Mellish RW, O'Sullivan MM, Garrahan NJ, Compston JE. Iliac crest trabecular bone mass and structure in patients with non-steroid treated rheumatoid arthritis. Ann. Rheum. Dis. 1987; 46: 830836.
  • 132
    Takahashi M, Wehrli FW, Hilaire L, Zemel BS, Hwang SN. In vivo NMR microscopy allows short-term serial assessment of multiple skeletal implications of corticosteroid exposure. Proceedings of the National Academy of Sciences. USA 2002; 19: 19.
  • 133
    Hildebrand T, Rüegsegger P. a new method for the model independent assessment of thickness in three-dimensional images. J. Microsc. 1997; 185: 6775.
  • 134
    Saha PK, Gomberg B, Wehrli FW. Fuzzy distance transform: theory, algorithms and applications. Comput. Vision Image Understanding 2003; 86: 171190.
  • 135
    Boyce RW, Ebert DC, Youngs TA, Paddock CL, Mosekilde L, Stevens ML, Gundersen HJ. Unbiased estimation of vertebral trabecular connectivity in calcium- restricted ovariectomized minipigs. Bone 1995; 16: 637642.
  • 136
    Kinney JH, Ladd AJC. The relationship between three-dimensional connectivity and the elastic properties of trabecular bone. J. Bone Miner. Res. 1998; 13: 839845.
  • 137
    Kinney JH, Lane NE, Haupt DL. In vivo, three-dimensional microscopy of trabecular bone. J. Bone Miner. Res. 1995; 10: 264270.
  • 138
    Lane NE, Haupt D, Kimmel DB, Modin G, Kinney JH. Early estrogen replacement therapy reverses the rapid loss of trabecular bone volume and prevents further deterioration of connectivity in the rat. J. Bone Miner. Res. 1999; 14: 206214.
  • 139
    Saha PK, Chaudhuri BB. 3D digital topology under binary transformation with applications. Comput. Vision Image Understanding. 1996; 63: 418429.
  • 140
    Gomberg BG, Saha PK, Song HK, Hwang SN, Wehrli FW. Application of topological analysis to magnetic resonance images of human trabecular bone. IEEE Trans. Med. Imaging 2000; 19: 166174.
  • 141
    Saha PK, Gomberg BR, Wehrli FW. Three-dimensional digital topological characterization of cancellous bone architecture. Int. J. Imaging Syst. Technol. 2000; 11: 8190.
  • 142
    Pothuaud L, Porion P, Lespessailles E, Benhamou CL, Levitz P. A new method for three-dimensional skeleton graph analysis of porous media: application to trabecular bone microarchitecture. J. Microsc. 2000; 199(Pt 2): 149161.
  • 143
    Pothuaud L, Laib A, Levitz P, Benhamou CL, Majumdar S. Three-dimensional-line skeleton graph analysis of high-resolution magnetic resonance images: a validation study from 34-micron-resolution microcomputed tomography. J. Bone Miner. Res. 2002; 17: 18831895.
  • 144
    Pothuaud L, Van Rietbergen B, Mosekilde L, Beuf O, Levitz P, Benhamou CL, Majumdar S. Combination of topological parameters and bone volume fraction better predicts the mechanical properties of trabecular bone. J. Biomech. 2002; 35: 10911099.
  • 145
    Pothuaud L, Newitt DC, Lu Y, MacDonald B, Majumdar S. In vivo application of 3D-line skeleton graph analysis (LSGA) technique with high-resolution magnetic resonance imaging of trabecular bone structure. Osteoporos. Int. 2004; 15: 411419.
  • 146
    Wolff J. Das Gesetz der Transformation der Knochen. A. Hirschwald: Berlin, 1892.
  • 147
    Harrigan TP, Mann RW. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mater. Sci. 1984; 19: 761767.
  • 148
    Turner CH. On Wolff's law of trabecular architecture. J. Biomech. 1992; 25: 19.
  • 149
    Mosekilde L. Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscopy study (uncoupling of unloaded structures). Bone Miner. 1990; 10: 1335.
  • 150
    Ciarelli TE, Fyhrie DP, Schaffler MB, Goldstein SA. Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J. Bone Miner. Res. 2000; 15: 3240.
  • 151
    Chung HW, Wehrli FW, Williams JL, Wehrli SL. Three-dimensional nuclear magnetic resonance microimaging of trabecular bone. J. Bone Miner. Res. 1995; 10: 14521461.
  • 152
    Gomberg BR, Saha PK, Wehrli FW. Topology-based orientation analysis of trabecular bone networks. Med. Phys. 2003; 30: 158168.
  • 153
    Wald MJ, Vasilic B, Saha PK, Wehrli FW. Study of trabecular bone microstructure using spatial autocorrelation analysis. In Proceedings of SPIE. San Diego, CA, 2005; 291.
  • 154
    Barrall G, Frydman L, Chingas G. NMR diffraction and spatial statistics of stationary systems. Science 1992; 255: 714717.
  • 155
    Hall EL. Computer Image Processing and Recognition. Academic Press: New York, 1979.
  • 156
    Saha PK, Wehrli FW. A Robust method for measuring trabecular bone orientation anisotropy at in vivo resolution using tensor scale. Pattern Recog. 2004; 37: 19351944.
  • 157
    Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 1998; 22: 445454.
  • 158
    Van Rietbergen B, Huiskes R, Eckstein F, Ruegsegger P. Trabecular bone tissue strains in the healthy and osteoporotic human femur. J. Bone Miner. Res. 2003; 18: 17811788.
  • 159
    Hollister SJ, Brennan JM, Kikuchi N. A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J. Biomech. 1994; 27: 433444.
  • 160
    Silva MJ, Keaveny TM, Hayes WC. Computed tomography-based finite element analysis predicts failure loads and fracture patterns for vertebral sections. J. Orthop. Res. 1998; 16: 300308.
  • 161
    Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech. 1999; 32: 10051012.
  • 162
    van Rietbergen B, Weinans H, Huiskes R, Odgaard A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J. Biomech. 1995; 28: 6981.
  • 163
    Ulrich D, van Rietbergen B, Laib A, Ruegsegger P. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 1999; 25: 5560.
  • 164
    van Rietbergen B, Majumdar S, Newitt D, MacDonald B. High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment. Clin. Biomech. (Bristol, Avon) 2002; 17: 8188.
  • 165
    Benito M, Gomberg B, Wehrli FW, Weening RH, Zemel B, Wright AC, Song HK, Cucchiara A, Snyder PJ. Deterioration of trabecular architecture in hypogonadal men. J. Clin. Endocrinol. Metab. 2003; 88: 14971502.
  • 166
    Amling M, Grote HJ, Vogel M, Hahn M, Delling G. Three-dimensional analysis of the spine in autopsy cases with renal osteodystrophy. Kidney Int. 1994; 46: 733743.
  • 167
    Link TM, Majumdar S, Augat P, Lin JC, Newitt D, Lu Y, Lane NE, Genant HK. In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J. Bone Miner. Res. 1998; 13: 11751182.
  • 168
    Majumdar S, Link TM, Augat P, Lin JC, Newitt D, Lane NE, Genant HK. Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos. Int. 1999; 10: 231239.
  • 169
    Wehrli FW, Gomberg BR, Saha PK, Song HK, Hwang SN, Snyder PJ. Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J. Bone Miner. Res. 2001; 16: 15201531.
  • 170
    Link TM, Saborowski S, Kisters K, Kempkes M, Kosch M, Newitt D, Lu Y, Waldt S, Majumdar S. Changes in calcaneal trabecular bone structure assessed with high-resolution MR imaging in patients with kidney transplantation. Osteoporos. Int. 2002; 13: 119129.
  • 171
    Wehrli FW, Leonard MB, Saha PK, Gomberg BG. Quantitative high-resolution MRI reveals structural implications of renal osteodystrophy on trabecular and cortical bone. J. Magn. Reson. Imaging 2004; 20: 8389.
  • 172
    Benito M, Vasilic B, Wehrli FW, Bunker B, Wald M, Gomberg B, Wright AC, Zemel B, Cucchiara A, Snyder PJ. Effect of testosterone replacement on bone architecture in hypogonadal men. J. Bone Miner. Res. 2005; 20: 1785.
  • 173
    Gordon CL, Webber CE, Adachi JD, Christoforou N. In. vivo assessment of trabecular bone structure at the distal radius from high-resolution computed tomography images. Phys. Med. Biol. 1996; 41: 495508.
  • 174
    Gordon CL, Lang TF, Augat P, Genant HK. Image-based assessment of spinal trabecular bone structure from high- resolution CT images. Osteoporos. Int. 1998; 8: 317325.
  • 175
    MacIntyre NJ, Adachi JD, Webber CE. In vivo measurement of apparent trabecular bone structure of the radius in women with low bone density discriminates patients with recent wrist fracture from those without fracture. J. Clin. Densitom. 2003; 6: 3543.
  • 176
    Link TM, Bauer JS. Imaging of trabecular bone structure. Semin. Musculoskel. Radiol. 2002; 6: 253261.
  • 177
    Muller ME, Webber CE, Adachi JD. Hormone replacement therapy improves distal radius bone structure by endocortical mineral deposition. Can. J. Physiol. Pharmacol. 2003; 81: 952958.
  • 178
    Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989; 45: 255268.
  • 179
    Chesnut CH III, Silverman S, Andriano K, Genant H, Gimona A, Harris S, Kiel D, LeBoff M, Maricic M, Miller P, Moniz C, Peacock M, Richardson P, Watts N, Baylink D. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am. J. Med. 2000; 109: 267276.
  • 180
    Riggs BL, Melton LJ III. Bone turnover matters: the raloxifene treatment paradox of dramatic decreases in vertebral fractures without commensurate increases in bone density. J. Bone Miner. Res. 2002; 17: 1114.