SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Hermansen L. Oxygen transport during exercise in human subjects. Acta Physiol. Scand. 1974; 399(suppl.): 1104.
  • 2
    Guyton AC. Transport of oxygen and carbon dioxide in the blood and body fluids. In: Textbook of Medical Physiology, GuytonAC (ed.), 5th edn. Saunders: Philiadelphia, PA, 1976; 543556.
  • 3
    Wedeen VJ, Meuli RA, Edelmann RR, Geller SC, Frank LR, Brady TJ, Rosen BR. Projective imaging of pulsatile flow with magnetic resonance imaging. Science 1985; 230: 946946.
  • 4
    Singer JR, Crooks LE. Nuclear magnetic resonance blood flow measurements in the human brain. Science 1983; 221: 664664.
  • 5
    Atkinson DJ, Burstein D, Edelmann RR. First-pass cardiac perfusion: evaluation with ultrafast magnetic resonance imaging. Radiology 1990; 174: 757757.
  • 6
    Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc. Natl Acad. Sci. USA 1992; 89: 212216. [Published erratum appears in Proc. Natl Acad. Sci. USA 1992; 89: 4220.]
  • 7
    Thulborn KR, Waterton JC, Matthews PM, Radda GK. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim. Biophys. Acta 1982; 714: 265270.
  • 8
    Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskopf RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng H, Brady TJ, Rosen BR. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl Acad. Sci. USA 1992; 89: 56755679.
  • 9
    Hoult DI, Busby JW, Gadian DG, Radda GK, Richards RE, Seeley PJ. Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature (Lond.) 1974; 252: 285287.
  • 10
    Sotak CH, Freeman DM, Hurd RE. The unequivocal determination of in vivo lactic acid using two-dimensional double quantum coherence transfer spectroscopy. J. Magn. Reson. 1988; 78: 355361.
  • 11
    Moon RB, Richards JH. Determination of intracellular pH by 31P magnetic resonance. J. Biol. Chem. 1973; 248: 72767278.
  • 12
    Kemp GJ, Radda GK. Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. Magn. Reson. Q. 1994; 10: 4363.
  • 13
    Chance B, Eleff S, Leigh JS, Sokolow JD, Sapega A. Mitochondrial regulation of phosphocreatine/inorganic phosphate ratios in exercising human muscle: a gated 31P NMR study. Proc. Natl Acad. Sci. USA 1981; 78: 67146718.
  • 14
    Wang Z, Noyszewski EA, Leigh JS. In vivo MRS measurement of deoxymyoglobin in human forearms. Magn. Reson. Med. 1990; 14: 562567.
  • 15
    Ichimural S, Kasumura T, Moriguchi T, Nakagawa N, Nagasawa T, Niwayama M, Yamamoto K, Hamaoka T. Two-dimensional evaluation of muscle oxygen consumption during incremental supine cycling exercise. In: Workshop on Investigation of Human Muscle Function in Vivo, Nashville, TN, 2005; 15.
  • 16
    Yu G, Durduran T, Lech G, Mohler III ER, Yodh AG. Assessment of muscle vascular disease with diffuse light. In: Workshop on Investigation of Human Muscle Function in Vivo, Nashville, TN, 2005; 35.
  • 17
    Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can. J. Appl. Physiol. 2004; 29: 463487.
  • 18
    Kemp GJ, Roberts N, Bimson WE, Bakran A, Harris PL, Gilling-Smith GL, Brennan J, Rankin A, Frostick SP. Mitochondrial function and oxygen supply in normal and in chronically ischemic muscle: a combined 31P magnetic resonance spectroscopy and near infrared spectroscopy study in vivo. J. Vasc. Surg. 2001; 34: 11031110.
  • 19
    Jue T, Anderson S. 1H NMR observation of tissue myoglobin: an indicator of cellular oxygenation in vivo. Magn. Reson. Med. 1990; 13: 524528.
  • 20
    Livingston D. J., La Mar G. N., Brown W. D. Myoglobin diffusion in bovine heart muscle. Science 1983; 220: 7173.
  • 21
    Noyszewski EA, Chen EL, Reddy R, Wang Z, Leigh JS. A simplified sequence for observing deoxymyoglobin signals in vivo: myoglobin excitation with dynamic unexcitation and saturation of water and fat (MEDUSA). Magn. Reson. Med. 1997; 38: 788792.
  • 22
    Ogg RJ, Kingsley PB, Taylor JS. WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J. Magn. Reson. B 1994; 104: 110.
  • 23
    Brillault-Salvat C, Giacomini E, Jouvensal L, Wary C, Bloch G, Carlier PG. Simultaneous determination of muscle perfusion and oxygenation by interleaved NMR plethysmography and deoxymyoglobin spectroscopy. NMR Biomed. 1997; 10: 315323.
  • 24
    Wang Z, Wang DJ, Noyszewski EA, Bodgan A, Haselgrove J, Reddy R, Zimmerman R, Leigh J. Sensitivity of in vivo MRS of the n-delta proton in proximal histidine of deoxymyoglobin. Magn. Reson. Med. 1992; 27: 362367.
  • 25
    Wang DJ, Nioka S, Wang Z, Leigh JS, Chance B. NMR visibility studies of N-delta proton of proximal histidine in deoxyhemoglobin in lysed and intact red cells. Magn. Reson. Med. 1993; 30: 759763.
  • 26
    Tran TK, Kreutzer U, Jue T. Observing the deoxy myoglobin and hemoglobin signals from rat myocardium in situ. FEBS Lett. 1998; 434: 309312.
  • 27
    Lebon V, Brillault-Salvat C, Bloch G, Leroy-Willig A, Carlier PG. Evidence of muscle BOLD effect revealed by simultaneous interleaved gradient-echo NMRI and myoglobin NMRS during leg ischemia. Magn. Reson. Med. 1998; 40: 551558.
  • 28
    Carlier PG, Brillault-Salvat C, Giacomini E, Wary C, Bloch G. How to investigate oxygen supply, uptake, and utilization simultaneously by interleaved NMR imaging and spectroscopy of the skeletal muscle. Magn. Reson. Med. 2005; 54: 10101013.
  • 29
    Duteil S, Bourrilhon C, Raynaud JS, Wary C, Richardson RS, Leroy-Willig A, Jouanin JC, Guezennec CY, Carlier PG. Metabolic and vascular support for the role of myoglobin in humans: a multiparametric NMR study. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004; 287: R14411449.
  • 30
    Mole PA, Chung Y, Tran TK, Sailasuta N, Hurd R, Jue T. Myoglobin desaturation with exercise intensity in human gastrocnemius muscle. Am. J. Physiol. 1999; 277: R173180.
  • 31
    Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD. Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J. Clin. Invest. 1995; 96: 19161926.
  • 32
    Chung Y, Mole PA, Sailasuta N, Tran TK, Hurd R, Jue T. Control of respiration and bioenergetics during muscle contraction. Am. J. Physiol. Cell Physiol. 2005; 288: C730738.
  • 33
    Vanderthommen M, Duteil S, Wary C, Raynaud JS, Leroy-Willig A, Crielaard JM, Carlier PG. A comparison of voluntary and electrically induced contractions by interleaved 1H- and 31P-NMRS in humans. J. Appl. Physiol. 2003; 94: 10121024.
  • 34
    Conley KE, Ordway GA, Richardson RS. Deciphering the mysteries of myoglobin in striated muscle. Acta Physiol. Scand. 2000; 168: 623634.
  • 35
    Carlier PG, Bertoldi D. In vivo functional NMR imaging of resistance artery control. Am. J. Physiol. Heart Circul. Physiol. 2005; 288: H10281036.
  • 36
    Richardson RS, Duteil S, Wary C, Wray DW, Hoff J, Carlier P. Muscle intracellular oxygenation: the impact of ambient oxygen availability. J. Physiol. 2006; 571: 415424.
  • 37
    Carlier PG, Bloch G, Wary C, Giacomini E, Jehenson P, Leroy-Willig A, Leclerc JHJ. Quantitation of myoglobin using tissue water reference: implications for the determination of muscle intracellular oxygen pressure by in vivo1H NMR spectroscopy. In: Proc. 2nd Annual Meeting Society Magnetic Resonance, San Francisco, CA, 1994: 1251.
  • 38
    Kreis R, Bruegger K, Skjelsvik C, Zwicky S, Ith M, Jung B, Baumgartner I, Boesch C. Quantitative (1)H magnetic resonance spectroscopy of myoglobin de- and reoxygenation in skeletal muscle: reproducibility and effects of location and disease. Magn. Reson. Med. 2001; 46: 240248.
  • 39
    Jansson E, Sylven C. Myoglobin concentration in single type 1 and type 2 muscle fibres in man. Histochemistry 1983; 78: 121124.
  • 40
    Moller P, Sylven C. Myoglobin in human skeletal muscle. Scand. J. Clin. Lab. Invest. 1981; 41: 479482.
  • 41
    Nemeth PM, Lowry OH. Myoglobin levels in individual human skeletal muscle fibers of different types. J. Histochem. Cytochem. 1984; 32: 12111216.
  • 42
    Gilles R, Carlier PG, D'Orio V. Nuclear magnetic resonance spectroscopy: insights into experimental septic shock. In: 1994 Yearbook of Intensive Care and Emergency Medicine, VincentJL (ed.). Springer: Heidelberg, 1994; 121131.
  • 43
    Sala E, Noyszewski EA, Campistol JM, Marrades RM, Dreha S, Torregrossa JV, Beers JS, Wagner PD, Roca J. Impaired muscle oxygen transfer in patients with chronic renal failure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001; 280: R12401248.
  • 44
    Baumgartner I, Thoeny HC, Kummer O, Roefke C, Skjelsvik C, Boesch C, Kreis R. Leg ischemia: assessment with MR angiography and spectroscopy. Radiology 2005; 234: 833841.
  • 45
    Tran TK, Sailasuta N, Hurd R, Jue T. Spatial distribution of deoxymyoglobin in human muscle: an index of local tissue oxygenation. NMR Biomed. 1999; 12: 2630.
  • 46
    Wang Z, Wang DJ, Noyszewski EA, Haselgrove JC, Leigh JS. In vivo spectroscopy imaging of deoxymyglobin. In: Proc. Soceity of Magnetic Resonance in Medicine, Berlin, 1992; 781.
  • 47
    Kreutzer U, Wang DS, Jue T. Observing the 1H NMR signal of the myoglobin Val-E11 in myocardium: an index of cellular oxygenation. Proc. Natl Acad. Sci. USA 1992; 89: 47314733.
  • 48
    Ohno T, Kuroshima A. Muscle myoglobin as determined by electrophoresis in thermally acclimated rat. Jpn J. Physiol. 1986; 36: 733744.
  • 49
    Ogawa S, Lee TM, Kay AR, Tank DW. Oxygenation sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Proc. Natl Acad. Sci. USA 1990; 87: 98689872.
  • 50
    Donahue KM, Van Kylen J, Guven S, El-Bershawi A, Luh WM, Bandettini PA, Cox RW, Hyde JS, Kissebah AH. Simultaneous gradient-echo/spin-echo EPI of graded ischemia in human skeletal muscle. J. Magn. Reson. Imag. 1998; 8: 11061113.
  • 51
    Toussaint JF, Kwong KK, Mkparu FO, Weisskoff RM, LaRaia PJ, Kantor HL, M'Kparu F. Perfusion changes in human skeletal muscle during reactive hyperemia measured by echo-planar imaging. Magn. Reson. Med. 1996; 35: 6269.
  • 52
    Greve J, Bernstein L, S-P. W, Powell-Braxton L, Peale F, Bunting S, Van Bruggen N. Age and atherosclerosis adversely affect skeletal muscle functional recovery following femoral artery ligation in the mouse: MRI assessment of functional hyperemia. In: Proc. International Society of Magnetic Resonance in Medicine, Glasgow, 2001; 134.
  • 53
    Jordan BF, Kimpalou JZ, Beghein N, Dessy C, Feron O, Gallez B. Contribution of oxygenation to BOLD contrast in exercising muscle. Magn. Reson. Med. 2004; 52: 391396.
  • 54
    Meyer RA, Towse TF, Reid RW, Jayaraman RC, Wiseman RW, McCully KK. BOLD MRI mapping of transient hyperemia in skeletal muscle after single contractions. NMR Biomed. 2004; 17: 392398.
  • 55
    Noseworthy MD, Bulte DP, Alfonsi J. BOLD magnetic resonance imaging of skeletal muscle. Semin. Musculoskelet. Radiol. 2003; 7: 307315.
  • 56
    Towse TF, Slade JM, Meyer RA. Effect of physical activity on MRI-measured blood-oxygen-level-dependent (BOLD) transients in skeletal muscle after brief contractions. J. Appl. Physiol. 2005; 99: 715722.
  • 57
    Wigmore DM, Damon BM, Pober DM, Kent-Braun JA. MRI measures of perfusion-related changes in human skeletal muscle during progressive contractions. J. Appl. Physiol. 2004; 97: 23852394.
  • 58
    Utz W, Hubacek J, Filipchuk N, Frayne R, Banijamali H, Anderson T, Friedrich M. Regional findings of endothelial function in the forearm as assessed by high-field BOLD-MRI. Eur. Heart J. 2002; 23(suppl. 4): 466.
  • 59
    Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. MR contrast due to intravascular magnetic susceptibility perturbations. Magn. Reson. Med. 1995; 34: 555566.
  • 60
    Duteil S, Wary C, Raynaud JS, Lebon V, Lesage D, Leroy-Willig A, Carlier PG. Influence of vascular filling and perfusion on BOLD contrast during reactive hyperemia in human skeletal muscle. Magn. Reson. Med. 2006; 55: 450454.
  • 61
    Lebon V, Brillault-Salvat C, Carlier PG, Leroy-Willig A. Simultaneous measurement of perfusion and oxygenation variations using a multiple gradient-echo sequence. In: Proc 5th Scientific Meeting of the International Society of Magnetic Resonance in Medicine, Vancouver, 1997; 1769.
  • 62
    De Blasi RA, Cope M, Ferrari M. Oxygen consumption of human skeletal muscle by near infrared spectroscopy during tourniquet-induced ischemia in maximal voluntary contraction. Adv. Exp. Med. Biol. 1992; 317: 771777.
  • 63
    Damon BM, Gore JC. Physiological basis of muscle functional MRI: predictions using a computer model. J. Appl. Physiol. 2005; 98: 264273.
  • 64
    Logothetis NK, Wandell BA. Interpreting the BOLD signal. A. Rev. Physiol. 2004; 66: 735769.
  • 65
    Lebon V, Carlier P, Brillaut-Salvat C, Bloch G, Leroy-Willig A. Anisotropy of the BOLD effect in the skeletal muscle. In: Proc International Society of Magnetic Resonance in Medicine, Sydney, 1998; 1424.
  • 66
    Ledermann HP, Steinbrich W, Heidecker HG, Schulte A, Aschwanden M, Jaeger K, Bilecen D-P. Calf muscle BOLD f-MRI: comparison of healthy volunteers and Grade II PAOD Patients. Initial results. MAGMA 2004; 16: S58.
  • 67
    Büchert M, Bilecen D, Winterer J, Schulte A, Langer M, Hennig J. Time resolved BOLD response in the muscle of patients with peripheral vascular occlusive disease. In: Proc International Society of Magnetic Resonance in Medicine, Honolulu, HI, 2002; 291.
  • 68
    Frank LR, Wong EC, Haseler LJ, Buxton RB. Dynamic imaging of perfusion in human skeletal muscle during exercise with arterial spin labeling. Magn. Reson. Med. 1999; 42: 258267.
  • 69
    Raynaud JS, Duteil S, Vaughan JT, Hennel F, Wary C, Leroy-Willig A, Carlier PG. Determination of skeletal muscle perfusion using arterial spin labeling NMRI: validation by comparison with venous occlusion plethysmography. Magn. Reson. Med. 2001; 46: 305311.
  • 70
    Marro KI, Hyyti OM, Vincent MA, Kushmerick MJ. Validation and advantages of FAWSETS perfusion measurements in skeletal muscle. NMR Biomed. 2005; 18: 226234.
  • 71
    Vidal G, Giacomini E, Wary C, Juvet P, Emmanuel F, Carlier PG. Combined ASL perfusion imaging, BOLD imaging and 31P NMR spectroscopy of the leg in a rat model of peripheral arteriopathy. In: 11th Meeting International Society of Magnetic Resonance in Medicine, Toronto, 2003; 1692.
  • 72
    Carlier PG. Multiparametric functional NMR of skeletal muscle: application to in vivo investigations of oxygen metabolism. MAGMA 2002: 164166.
  • 73
    Brillault-Salvat C, Giacomini E, Wary C, Peynsaert J, Jouvensal L, Bloch G, Carlier PG. An interleaved heteronuclear NMRI-NMRS approach to non-invasive investigation of exercising human skeletal muscle. Cell Mol. Biol. 1997; 43: 751762.
  • 74
    Corbally MT, Brennan MF. Noninvasive measurement of regional blood flow in man. Am. J. Surg. 1990; 160: 313321.
  • 75
    Feinstein SB. The powerful microbubble: from bench to bedside, from intravascular indicator to therapeutic delivery system, and beyond. Am. J. Physiol. Heart Circul. Physiol. 2004; 287: H450457.
  • 76
    Bergmann SR, Fox KA, Rand AL, McElvany KD, Welch MJ, Markham J, Sobel BE. Quantification of regional myocardial blood flow in vivo with H215O. Circulation 1984; 70: 724733.
  • 77
    Wilke N, Jerosch-Herold M, Stillman AE, Kroll K, Tsekos N, Merkle H, Parrish T, Hu X, Wang Y, Bassingthwaighte J, Bache RJ, Ugurbil K. Concepts of myocardial perfusion imaging in magnetic resonance imaging. Magn. Reson. Q. 1994; 10: 249286.
  • 78
    Thompson RB, Aviles RJ, Faranesh AZ, Raman VK, Wright V, Balaban RS, McVeigh ER, Lederman RJ. Measurement of skeletal muscle perfusion during postischemic reactive hyperemia using contrast-enhanced MRI with a step-input function. Magn. Reson. Med. 2005; 54: 289298.
  • 79
    Luo Y, Mohning KM, Hradil VP, Wessale JL, Segreti JA, Nuss ME, Wegner CD, Burke SE, Cox BF. Evaluation of tissue perfusion in a rat model of hind-limb muscle ischemia using dynamic contrast-enhanced magnetic resonance imaging. J. Magn. Reson. Imag. 2002; 16: 277283.
  • 80
    Lutz AM, Weishaupt D, Amann-Vesti BR, Pfammatter T, Goepfert K, Marincek B, Nanz D. Assessment of skeletal muscle perfusion by contrast medium first-pass magnetic resonance imaging: technical feasibility and preliminary experience in healthy volunteers. J. Magn. Reson. Imag. 2004; 20: 111121.
  • 81
    Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn. Reson. Med. 1992; 23: 3745.
  • 82
    Buxton RB. Arterial spin labelling techniques. In: Introduction to Functional Magnetic Resonance Imaging Principles and Techniques. Cambridge University Press: New York, 2002; 351387.
  • 83
    Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn. Reson. Med. 1998; 40: 383396.
  • 84
    Wong EC, Buxton RB, Frank LR. A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magn. Reson. Med. 1998; 40: 348355.
  • 85
    Golay X, Hendrikse J, Lim TC. Perfusion imaging using arterial spin labeling. Top. Magn. Reson. Imag. 2004; 15: 1027.
  • 86
    Barbier EL, Lamalle L, Decorps M. Methodology of brain perfusion imaging. J. Magn. Reson. Imag. 2001; 13: 496520.
  • 87
    Wong EC, Buxton RB, Frank LR. Quantitative perfusion imaging using arterial spin labeling. Neuroimag. Clin. N. Am. 1999; 9: 333342.
  • 88
    Schepers J, van Osch MJ, Bartels LW, Heukels SN, Viergever MA, Nicolay K. The effect of B1 field inhomogeneity and the nonselective inversion profile on the kinetics of FAIR-based perfusion MRI. Magn. Reson. Med. 2005; 53: 13551362.
  • 89
    Frouin F, Duteil S, Lesage D, Carlier PG, Herment A, Leroy-Willig A. An automated image processing strategy to improve accuracy of dynamic arterial spin labeling perfusion studies. Application to skeletal muscle under stress. Magn. Reson. Imag. (in press).
  • 90
    Marro KI, Kushmerick MJ. Skeletal muscle perfusion measurements using adiabatic inversion of arterial water. Magn. Reson. Med. 1997; 38: 4047.
  • 91
    Marro KI, Hyyti OM, Kushmerick MJ. FAWSETS perfusion measurements in exercising skeletal muscle. NMR Biomed. 2005; 18: 322330.
  • 92
    Toussaint JF, Kwong KK, F MK, Weisskoff RM, LaRaia PJ, Kantor HL. Interrelationship of oxidative metabolism and local perfusion demonstrated by NMR in human skeletal muscle. J. Appl. Physiol. 1996; 81: 22212228.
  • 93
    Pohmann R, Kunnecke B, Fingerle J, Kienlin MV. Fast perfusion measurements in rat skeletal muscle at rest and during exercise with single-voxel FAIR (flow-sensitive alternating inversion recovery). Magn. Reson. Med. 2005; 55: 108115.
  • 94
    Vidal G, Wary C, Giacomini E, Carlier PG. A truly non-invasive set-up for the determination of muscle force, oxydative phosphorylations and perfusion in the Rat Calf in vivo. MAGMA 2002: 121122.
  • 95
    Bertoldi D, Parzy E, Fromes Y, Wary C, Leroy-Willig A, Carlier PG. New insight into abnormal muscle vasodilatory responses in aged hypertensive rats by in vivo nuclear magnetic resonance imaging of perfusion. J. Vasc. Res. 2006; 43: 149156.
  • 96
    Streif JU, Hiller KH, Waller C, Nahrendorf M, Wiesmann F, Bauer WR, Rommel E, Haase A. In vivo assessment of absolute perfusion in the murine skeletal muscle with spin labeling MRI. Magnetic resonance imaging. J. Magn. Reson. Imag. 2003; 17: 147152.
  • 97
    Bertoldi D, Von Euw D, Fromes Y, Wary C, Leroy-Willig A, Carlier PG. Different patterns of post-ischemic hyperemia identified by arterial spin labeling in mouse skeletal muscle. MAGMA 2003: 15 Suppl 1, 304.
  • 98
    Richardson RS, Haseler LJ, Nygren AT, Bluml S, Frank LR. Local perfusion and metabolic demand during exercise: a noninvasive MRI method of assessment. J. Appl. Physiol. 2001; 91: 18451853.
  • 99
    Bertoldi D, Von Euw D, Fromes Y, Wary C, Carlier PG. Determination of skeletal muscle perfusion in mouse leg at rest with SATIR arterial spin labeling sequence. In: Proc. 11th Meeting International Society of Magnetic Resonance in Medicine, Toronto, 2003; 1519.
  • 100
    Bertoldi D, Carlier PG. Letter to the editor. J. Magn. Reson. Imag. 2003; 18: 515516 [author reply: 516].
  • 101
    Kubis N, Richer C, Domergue V, Giudicelli JF, Levy BI. Role of microvascular rarefaction in the increased arterial pressure in mice lacking for the endothelial nitric oxide synthase gene (eNOS3pt–/–). J. Hypertens. 2002; 20: 15811587.
  • 102
    Duhamel G, de Bazelaire C, Alsop DC. Evaluation of systematic quantification errors in velocity-selective arterial spin labeling of the brain. Magn. Reson. Med. 2003; 50: 145153.
  • 103
    St Lawrence KS, Frank JA, McLaughlin AC. Effect of restricted water exchange on cerebral blood flow values calculated with arterial spin tagging: a theoretical investigation. Magn. Reson. Med. 2000; 44: 440449.
  • 104
    Williams DS, Grandis DJ, Zhang W, Koretsky AP. Magnetic resonance imaging of perfusion in the isolated rat heart using spin inversion of arterial water. Magn. Reson. Med. 1993; 30: 361365.
  • 105
    Saab G, Thompson RT, Marsh GD. Multicomponent T–2 relaxation of in vivo skeletal muscle. Magn. Reson. Med. 1999; 42: 150157.
  • 106
    St Lawrence KS, Wang J. Effects of the apparent transverse relaxation time on cerebral blood flow measurements obtained by arterial spin labeling. Magn. Reson. Med. 2005; 53: 425433.
  • 107
    Patten C, Meyer RA, Fleckenstein JL. T2 mapping of muscle. Semin. Musculoskelet. Radiol. 2003; 7: 297305.
  • 108
    Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil. 2002; 81: S5269.
  • 109
    Meyer RA, Prior BM. Functional magnetic resonance imaging of muscle. Exerc. Sport Sci. Rev. 2000; 28: 8992.
  • 110
    Leroy-Willig A, Carlier P, Morvan D, Duboc D, Fardeau M. [Functional imaging of human muscle]. Rev. Neurol. (Paris) 1998; 154: 379388.
  • 111
    Frohlich ED. Local hemodynamic changes in hypertension: insights for therapeutic preservation of target organs. Hypertension 2001; 38: 13881394.
  • 112
    Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic Resonance Imaging. Physical Principles and Sequence Design. Wiley-Liss: New York, 1999.
  • 113
    Gillies RJ. NMR in Physiology and Biomedecine. Academic Press: San Diego, CA, 1994.
  • 114
    Thulborn KR, Soffe NF, Kadda GK. Simultaneous in vivo measurement of oxygen utilization and high-energy phosphate metabolism in rabbit skeletal muscle by multinuclear 1H and 31P NMR. J. Magn. Reson. 1981; 45: 362366.
  • 115
    Wary C, Bertoldi D, Noah N, Carlier P. Fully non-invasive multiparametric NMR exploration of muscle function in anesthetized rat in a single experiment. In: 13th Proc. International Society of Magnetic Resonance in Medicine, Miami, FL, 2005; 2007.