• 1
    DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J. Health Econom. 2003; 22: 151185.
  • 2
    Dickson M, Gagnon JP. Key factors in the rising cost of new drug discovery and development. Nat. Rev. Drug Discov. 2004; 3: 417429.
  • 3
    Rawlins MD. Cutting the cost of drug development? Nat. Rev. Drug Discov. 2004; 3: 360364.
  • 4
    Preziosi P. Science, pharmacoeconomics and ethics in drug R&D: a sustainable future scenario? Nat. Rev. Drug Discov. 2004; 3: 521526.
  • 5
    Frank R, Hargreaves R. Clinical biomarkers in drug discovery and development. Nat. Rev. Drug Discov. 2003; 2: 566580.
  • 6
    Hargreaves R, Wagner JA. Imaging as biomarker for decision making in drug development. In In Vivo MR Techniques in Drug Discovery and Development, BeckmannN (ed.). Taylor & Francis: New York, 2006; 3144.
  • 7
    NIH-FDA Conference. Biomarkers and surrogate endpoints: advancing clinical research and applications [abstracts]. Disease Markers 1998; 14: 187.
  • 8
    DiMasi JA. The value of improving the productivity of the drug development process: faster times and better decisions. Pharmacoeconomics 2002; 20(Suppl. 3): 110.
  • 9
    Duyk G. Attrition and translation. Science 2003; 302: 603605.
  • 10
    Horig H, Pullman W. From bench to clinic and back: perspective on the 1st IQPC Translational Research conference. J. Transl. Med. 2004; 2: 44.
  • 11
    Stein RL. A new model for drug discovery: meeting our societal obligation. Drug Discov. Today 2003; 8: 245248.
  • 12
    Knowles J, Gromo G. A guide to drug discovery: target selection in drug discovery. Nat. Rev. Drug Discov. 2004; 2: 6369.
  • 13
    Rudin M, Beckmann N, Porszasz R, Reese T, Bochelen D, Sauter A. In vivo magnetic resonance methods in pharmaceutical research: current status and perspectives. NMR Biomed. 1999; 12: 6997.
  • 14
    Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat. Rev. Drug Discov. 2003; 2: 123131.
  • 15
    Beckmann N, Mueggler T, Allegrini PR, Laurent D, Rudin M. From anatomy to the target: contributions of magnetic resonance imaging to preclinical pharmaceutical research. Anat. Rec. 2001; 265: 85100.
  • 16
    Beckmann N, Tigani B, Mazzoni L, Fozard JR. Magnetic resonance imaging of the lung provides potential for non-invasive preclinical evaluation of drugs. Trends Pharmacol. Sci. 2003; 24: 550554.
  • 17
    Beckmann N, Tigani B, Laurent D, Panizzutti R, Rudin M. Magnetic resonance imaging in drug discovery: lessons from disease areas. Drug Discov. Today 2004; 9: 3542.
  • 18
    Beckmann N, Cannet C, Fringeli-Tanner M, Baumann D, Pally C, Bruns C, Zerwes HG, Andriambeloson E, Bigaud M. Macrophage labeling by SPIO as an early marker of allograft chronic rejection in a rat model of kidney transplantation. Magn. Reson. Med. 2003; 49: 459467.
  • 19
    Beckmann N, Cannet C, Zurbruegg S, Haberthuer R, Li J, Pally C, Bruns C. Macrophage infiltration in rat kidney allografts detected by MRI: early marker of chronic rejection that strongly correlates with histology. Radiology 2006; 240: 717724.
  • 20
    Contag CH, Bachmann MH. Advances in in vivo bioluminescence imaging of gene expression. Annu. Rev. Biomed. Eng. 2002; 4: 235260.
  • 21
    Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2002; 2: 683693.
  • 22
    Acton PD, Kung HF. Small animal imaging with high resolution single photon emission tomography. Nucl. Med. Biol. 2003; 30: 889895.
  • 23
    Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. 2003; 13: 195208.
  • 24
    Ritman EL. Micro-computed tomography-current status and developments. Annu. Rev. Biomed. Eng. 2004; 6: 185208.
  • 25
    Nieman BJ, Bock NA, Bishop J, Chen XJ, Sled JG, Rossant J, Henkelman RM. Magnetic resonance imaging for detection and analysis of mouse phenotypes. NMR Biomed. 2005; 18: 447468.
  • 26
    Chen XJ. Mouse morphological phenotyping with magnetic resonance imaging. Methods Mol. Med. 2006; 124: 103127.
  • 27
    Rudin M. Molecular Imaging. Basic Principles and Applications in Biomedical Research. Imperial College Press: London, 2006.
  • 28
    Beckmann N. In vivo MR Techniques in Drug Discovery and Development. Taylor & Francis: New York, 2006.
  • 29
    Collins KA, Korcarz CE, Shroff SG, Bednarz JE, Fentzke RC, Lin H, Leiden JM, Lang RM. Accuracy of echocardiographic estimates of left ventricular mass in mice. Am. J. Physiol. Heart Circ. Physiol. 2001; 280: H1954H1962.
  • 30
    Collins KA, Korcarz CE, Lang RM. Use of echocardiography for the phenotypic assessment of genetically altered mice. Physiol. Genomics 2003; 13: 227239.
  • 31
    Kiatchoosakun S, Restivo J, Kirkpatrick D, Hoit BD. Assessment of left ventricular mass in mice: comparison between two-dimensional and m-mode echocardiography. Echocardiography 2002; 19: 199205.
  • 32
    Phoon CK, Turnbull DH. Ultrasound biomicroscopy-Doppler in mouse cardiovascular development. Physiol. Genomics 2003; 14: 315.
  • 33
    Hoit BD. Murine physiology: measuring the phenotype. J. Mol. Cell. Cardiol. 2004; 37: 377387.
  • 34
    Mu J, Adamson SL. Developmental changes in hemodynamics of uterine artery, utero- and umbilicoplacental, and vitelline circulations in mouse throughout gestation. Am. J. Physiol. Heart Circ. Physiol. 2006; 291: H1421H1428.
  • 35
    Cherin E, Williams R, Needles A, Liu G, White C, Brown AS, Zhou YQ, Foster FS. Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo. Ultrasound Med. Biol. 2006; 32: 683691.
  • 36
    Reddy AK, Taffet GE, Li YH, Lim SW, Pham TT, Pocius JS, Entman ML, Michael LH, Hartley CJ. Pulsed Doppler signal processing for use in mice: applications. IEEE Trans. Biomed. Eng. 2005; 52: 17711783.
  • 37
    Gronros J, Wikstrom J, Hagg U, Wandt B, Gan LM. Proximal to middle left coronary artery flow velocity ratio, as assessed using color Doppler echocardiography, predicts coronary artery atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 2006; 26: 11261131.
  • 38
    Cheung AM, Brown AS, Hastie LA, Cucevic V, Roy M, Lacefield JC, Fenster A, Foster FS. Three-dimensional ultrasound biomicroscopy for xenograft growth analysis. Ultrasound Med. Biol. 2005; 31: 865870.
  • 39
    Jouannot E, Duong-Van-Huyen JP, Bourahla K, Laugier P, Lelievre-Pegorier M, Bridal L. High-frequency ultrasound detection and follow-up of Wilms' tumor in the mouse. Ultrasound Med. Biol. 2006; 32: 183190.
  • 40
    McCarville MB, Streck CJ, Dickson PV, Li CS, Nathwani AC, Davidoff AM. Angiogenesis inhibitors in a murine neuroblastoma model: quantitative assessment of intratumoral blood flow with contrast-enhanced gray-scale US. Radiology 2006; 240: 7381.
  • 41
    Lavisse S, Paci A, Rouffiac V, Adotevi C, Opolon P, Peronneau P, Bourget P, Roche A, Perricaudet M, Fattal E, Lassau N. In vitro echogenicity characterization of poly[lactide-coglycolide] (plga) microparticles and preliminary in vivo ultrasound enhancement study for ultrasound contrast agent application. Invest. Radiol. 2005; 40: 536544.
  • 42
    Hughes MS, Marsh JN, Zhang H, Woodson AK, Allen JS, Lacy EK, Carradine C, Lanza GM, Wickline SA. Characterization of digital waveforms using thermodynamic analogs: detection of contrast-targeted tissue in vivo. IEEE Trans Ultrason. Ferroelectr. Freq. Control. 2006; 53: 16091616.
  • 43
    Wirtzfeld LA, Wu G, Bygrave M, Yamasaki Y, Sakai H, Moussa M, Izawa JI, Downey DB, Greenberg NM, Fenster A, Xuan JW, Lacefield JC. A new three-dimensional ultrasound microimaging technology for preclinical studies using a transgenic prostate cancer mouse model. Cancer Res. 2005; 65: 63376345.
  • 44
    Wu G, Wang L, Yu L, Wang H, Xuan JW. The use of three-dimensional ultrasound micro-imaging to monitor prostate tumor development in a transgenic prostate cancer mouse model. Tohoku J. Exp. Med. 2005; 207: 181189.
  • 45
    Badea C, Hedlund LW, Johnson GA. Micro-CT with respiratory and cardiac gating. Med. Phys. 2004; 31: 33243329.
  • 46
    Cavanaugh D, Johnson E, Price RE, Kurie J, Travis EL, Cody DD. In vivo respiratory-gated micro-CT imaging in small-animal oncology models. Mol. Imaging 2004; 3: 5562.
  • 47
    Ford NL, Nikolov HN, Norley CJ, Thornton MM, Foster PJ, Drangova M, Holdsworth DW. Prospective respiratory-gated micro- CT of free breathing rodents. Med. Phys. 2005; 32: 28882898.
  • 48
    Ritman EL. Molecular imaging in small animals: roles for micro-CT. J. Cell. Biochem. Suppl. 2002; 39: 116124.
  • 49
    Ford NL, Thornton MM, Holdsworth DW. Fundamental image quality limits for microcomputed tomography in small animals. Med. Phys. 2003; 30: 28692877.
  • 50
    Boone JM, Velazquez O, Cherry SR. Small-animal X-ray dose from micro-CT. Mol. Imaging 2004; 3: 149158.
  • 51
    Ritman EL. Micro-computed tomography of the lungs and pulmonary-vascular system. Proc. Am. Thorac. Soc. 2005; 2: 477480.
  • 52
    Klomp DW, Van Laarhoven HW, Kentgens AP, Heerschap A. Optimization of localized 19F magnetic resonance spectroscopy for the detection of fluorinated drugs in the human liver. Magn. Reson. Med. 2003; 50: 303308.
  • 53
    van Laarhoven HW, Klomp DW, Kamm YJ, Punt CJ, Heerschap A. In vivo monitoring of capecitabine metabolism in human liver by 19fluorine magnetic resonance spectroscopy at 1.5 and 3 Tesla field strength. Cancer Res. 2003; 63: 76097612.
  • 54
    Hamstra DA, Lee KC, Tychewicz JM, Schepkin VD, Moffat BA, Chen M, Dornfeld KJ, Lawrence TS, Chenevert TL, Ross BD, Gelovani JT, Rehemtulla A. The use of 19F spectroscopy and diffusion-weighted MRI to evaluate differences in gene-dependent enzyme prodrug therapies. Mol. Ther. 2004; 10: 916928.
  • 55
    Kamm YJ, Heerschap A, van den Bergh EJ, Wagener DJ. 19F-magnetic resonance spectroscopy in patients with liver metastases of colorectal cancer treated with 5-fluorouracil. Anticancer Drugs 2004; 15: 229233.
  • 56
    Griffiths JR, Glickson JD. Monitoring pharmacokinetics of anticancer drugs: non-invasive investigation using magnetic resonance spectroscopy. Adv. Drug Deliv. Rev. 2000; 41: 7589.
  • 57
    Artemov D, Solaiyappan M, Bhujwalla ZM. Magnetic resonance pharmacoangiography to detect and predict chemotherapy delivery to solid tumors. Cancer Res. 2001; 61: 30393044.
  • 58
    Rudin M, Beckmann N, Sauter A. In vivo pharmacokinetics using MRS. NMR Biomed. 1999; 12: 404.
  • 59
    Rudin M, Allegrini P, Beckmann N, Gremlich HU, Kneuer R, Laurent D, Rausch M, Stoeckli M. Noninvasive imaging in drug discovery and development. Ernst Schering Res. Found. Workshop 2004; 48: 4775.
  • 60
    Mueggler T, Baumann D, Rausch M, Rudin M. Bicuculline- induced brain activation in mice detected by functional magnetic resonance imaging. Magn. Reson. Med. 2001; 46: 292298.
  • 61
    Mueggler T, Sturchler-Pierrat C, Baumann D, Rausch M, Staufenbiel M, Rudin M. Compromised hemodynamic response in amyloid precursor protein transgenic mice. J. Neurosci. 2002; 22: 72187224.
  • 62
    Mueggler T, Baumann D, Rausch M, Staufenbiel M, Rudin M. Age-dependent impairment of somatosensory response in the amyloid precursor protein 23 transgenic mouse model of Alzheimer's disease. J. Neurosci. 2003; 23: 82318236.
  • 63
    Kuriwaki J, Nishijo H, Kondoh T, Uwano T, Torii K, Katsuki M, Ono T. Comparison of brain activity between dopamine D2 receptor-knockout and wild mice in response to dopamine agonist and antagonist assessed by fMRI. Neurosignals 2004; 13: 227240.
  • 64
    Lee JH, Silva AC, Merkle H, Koretsky AP. Manganese-enhanced magnetic resonance imaging of mouse brain after systemic administration of MnCl2: dose-dependent and temporal evolution of T1 contrast. Magn. Reson. Med. 2005; 53: 640648.
  • 65
    Watanabe T, Frahm J, Michaelis T. Functional mapping of neural pathways in rodent brain in vivo using manganese-enhanced three-dimensional magnetic resonance imaging. NMR Biomed. 2004; 17: 554568.
  • 66
    Watanabe T, Radulovic J, Boretius S, Frahm J, Michaelis T. Mapping of the habenulo-interpeduncular pathway in living mice using manganese-enhanced 3D MRI. Magn Reson Imaging 2006; 24: 209215.
  • 67
    Pautler PG, Silva AC, Koretsky AP. In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn. Reson. Med. 1998; 70: 740748.
  • 68
    Yu X, Wadghiri YZ, Sanes DH, Turnbull DH. In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nat. Neurosci. 2005; 8: 961968.
  • 69
    Zhang S, Fu J, Zhou Z. Changes in the brain mitochondrial proteome of male Sprague-Dawley rats treated with manganese chloride. Toxicol. Appl. Pharmacol. 2005; 202: 1317.
  • 70
    Bae JH, Jang BC, Suh SI, Ha E, Baik HH, Kim SS, Lee MY, Shin DH. Manganese induces inducible nitric oxide synthase (iNOS) expression via activation of both MAP kinase and PI3K/Akt pathways in BV2 microglial cells. Neurosci. Lett. 2006; 398: 151154.
  • 71
    Chen MT, Cheng GW, Lin CC, Chen BH, Huang YL. Effects of acute manganese chloride exposure on lipid peroxidation and alteration of trace metals in rat brain. Biol. Trace Elem. Res. 2006; 110: 163178.
  • 72
    Chapon C, Franconi F, Roux J, Le Jeune JJ, Lemaire L. Prenatal evaluation of kidney function in mice using dynamic contrast- enhanced magnetic resonance imaging. Anat. Embryol. (Berl.) 2005; 209: 263267.
  • 73
    Kobayashi H, Jo SK, Kawamoto S, Yasuda H, Hu X, Knopp MV, Brechbiel MW, Choyke PL, Star RA. Polyamine dendrimer-based MRI contrast agents for functional kidney imaging to diagnose acute renal failure. J. Magn. Reson. Imaging 2004; 20: 512518.
  • 74
    Dear JW, Kobayashi H, Jo SK, Holly MK, Hu X, Yuen PS, Brechbiel MW, Star RA. Dendrimer-enhanced MRI as a diagnostic and prognostic biomarker of sepsis-induced acute renal failure in aged mice. Kidney Int. 2005; 67: 21592167.
  • 75
    Dear JW, Kobayashi H, Brechbiel MW, Star RA. Imaging acute renal failure with polyamine dendrimer-based MRI contrast agents. Nephron Clin. Pract. 2006; 103: c45c49.
  • 76
    Padhani AR. Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J. Magn. Reson. Imaging 2002; 16: 407422.
  • 77
    Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. Imaging 1999; 10: 223232.
  • 78
    Ferretti S, Allegrini PR, O'Reilly T, Schnell C, Stumm M, Wartmann M, Wood J, McSheehy PM. Patupilone induced vascular disruption in orthotopic rodent tumor models detected by magnetic resonance imaging and interstitial fluid pressure. Clin. Cancer Res. 2005; 11: 77737784.
  • 79
    Muruganandham M, Lupu M, Dyke JP, Matei C, Linn M, Packman K, Kolinsky K, Higgins B, Koutcher JA. Preclinical evaluation of tumor microvascular response to a novel antiangiogenic/antitumor agent RO0281501 by dynamic contrast-enhanced MRI at 1.5 T. Mol. Cancer Ther. 2006; 5: 19501957.
  • 80
    Salmon HW, Siemann DW. Effect of the second-generation vascular disrupting agent OXi4503 on tumor vascularity. Clin. Cancer Res. 2006; 12: 40904094.
  • 81
    Tang JS, Choy G, Bernardo M, Thomasson D, Libutti SK, Choyke PL. Dynamic contrast-enhanced magnetic resonance imaging in the assessment of early response to tumor necrosis factor alpha in a colon carcinoma model. Invest. Radiol. 2006; 41: 691696.
  • 82
    Hoehn M, Nicolay K, Franke C, van der Sanden B. Application of magnetic resonance to animal models of cerebral ischemia. J. Magn. Reson. Imaging 2001; 14: 491509.
  • 83
    Choi IY, Lee SP, Guilfoyle DN, Helpern JA. In vivo NMR studies of neurodegenerative diseases in transgenic and rodent models. Neurochem. Res. 2003; 28: 9871001.
  • 84
    Heerschap A, Sommers MG, in 't Zandt HJ, Renema WK, Veltien AA, Klomp DW. Nuclear magnetic resonance in laboratory animals. Methods Enzymol. 2004; 385: 4163.
  • 85
    Jenkins BG, Andreassen OA, Dedeoglu A, Leavitt B, Hayden M, Borchelt D, Ross CA, Ferrante RJ, Beal MF. Effects of CAG repeat length, HTT protein length and protein context on cerebral metabolism measured using magnetic resonance spectroscopy in transgenic mouse models of Huntington's disease. J. Neurochem. 2005; 95: 553562.
  • 86
    Marjanska M, Curran GL, Wengenack TM, Henry PG, Bliss RL, Poduslo JF, Jack CR Jr, Ugurbil K, Garwood M. Monitoring disease progression in transgenic mouse models of Alzheimer's disease with proton magnetic resonance spectroscopy. Proc. Natl. Acad. Sci. USA 2005; 102: 1190611910.
  • 87
    von Kienlin M, Kunnecke B, Metzger F, Steiner G, Richards JG, Ozmen L, Jacobsen H, Loetscher H. Altered metabolic profile in the frontal cortex of PS2APP transgenic mice, monitored throughout their life span. Neurobiol. Dis. 2005; 18: 3239.
  • 88
    Maslov MY, Chacko VP, Stuber M, Moens AL, Kass DA, Champion HC, Weiss RG. Altered high energy phosphate metabolism predicts contractile dysfunction and subsequent ventricular remodeling in pressure-overload hypertrophy mice. Am. J. Physiol. Heart Circ. Physiol. 2007; 292: H387H391.
  • 89
    Renema WKJ, Schmidt A, van Asten JJA, Oerlemans F, Ullrich K, Wieringa B, Isbrandt D, Heerscharp A. MR spectroscopy of muscle and brain in guanidinoacetate methyltransferase (GAMT)-deficient mice: validation of an animal model to study creatine deficiency. Magn. Reson. Med. 2003; 50: 936943.
  • 90
    Marcinek DJ, Schenkman KA, Ciesielski WA, Lee D, Conley KE. Reduced mitochondrial coupling in vivo alters cellular energetics in aged mouse skeletal muscle. J. Physiol. 2005; 569: 467473.
  • 91
    Jordan BF, Black K, Robey IF, Runquist M, Powis G, Gillies RJ. Metabolite changes in HT-29 xenograft tumors following HIF-1alpha inhibition with PX-478 as studied by MR spectroscopy in vivo and ex vivo. NMR Biomed. 2005; 18: 430439.
  • 92
    Al-Saffar NM, Troy H, Ramirez de Molina A, Jackson LE, Madhu B, Griffiths JR, Leach MO, Workman P, Lacal JC, Judson IR, Chung YL. Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models. Cancer Res. 2006; 66: 427434.
  • 93
    Fricke ST, Rodriguez O, Vanmeter J, Dettin LE, Casimiro M, Chien CD, Newell T, Johnson K, Ileva L, Ojeifo J, Johnson MD, Albanese C. In vivo magnetic resonance volumetric and spectroscopic analysis of mouse prostate cancer models. Prostate 2006; 66: 708717.
  • 94
    Madhu B, Waterton JC, Griffiths JR, Ryan AJ, Robinson SP. The response of RIF-1 fibrosarcomas to the vascular-disrupting agent ZD6126 assessed by in vivo and ex vivo1H magnetic resonance spectroscopy. Neoplasia 2006; 8: 560567.
  • 95
    Tkac I, Henry PG, Andersen P, Keene CD, Low WC, Gruetter R. Highly resolved in vivo1H NMR spectroscopy of the mouse brain at 9.4 T. Magn. Reson. Med. 2004; 52: 478484.
  • 96
    Miyasaka N, Takahashi K, Hetherington HP. Fully automated shim mapping method for spectroscopic imaging of the mouse brain at 9.4 T. Magn. Reson. Med. 2006; 55: 198202.
  • 97
    Schwarcz A, Natt O, Watanabe T, Boretius S, Frahm J, Michaelis T. Localized proton MRS of cerebral metabolite profiles in different mouse strains. Magn. Reson. Med. 2003; 49: 822827.
  • 98
    Duatti A. In vivo imaging of oligonucleotides with nuclear tomography. Curr. Drug Targets 2004; 5: 753760.
  • 99
    Yang Y, Tai YC, Siegel S, Newport DF, Bai B, Li Q, Leahy RM, Cherry SR. Optimization and performance evaluation of the microPET II scanner for in vivo small-animal imaging. Phys. Med. Biol. 2004; 49: 25272545.
  • 100
    Tay YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, Laforest R. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J. Nucl. Med. 2005; 46: 455463.
  • 101
    Weber S, Bauer A. Small animal PET: aspects of performance assessment. Eur. J. Nucl. Med. Mol. Imaging 2004; 31: 15451555.
  • 102
    Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur. J. Nucl. Med. Mol. Imaging 2004; 31: 761782.
  • 103
    Beekman FJ, McElroy DP, Berger F, Gambhir SS, Hoffman EJ, Cherry SR. Towards in vivo nuclear microscopy: iodine-125 imaging in mice using micro-pinholes. Eur. J. Nucl. Med. Mol. Imaging 2002; 29: 933938.
  • 104
    Cao Z, Bal G, Accorsi R, Acton PD. Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging: a simulation study. Phys. Med. Biol. 2005; 50: 46094624.
  • 105
    Acton PD, Choi SR, Plossl K, Kung HF. Quantification of dopamine transporter in mouse brain using ultra-high resolution single photon emission tomography. Eur. J. Nucl. Med. 2002; 29: 691698.
  • 106
    Booij J, de Bruin K, Habraken JB, Voorn P. Imaging of dopamine transporters in rats using high resolution pinhole single photon emission tomography. Eur. J. Nucl. Med. 2002; 29: 12211224.
  • 107
    Contag CH, Spilman SD, Contag PR, Oshiro M, Eames B, Dennery P, Stevenson DK, Benaron DA. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem. Photobiol. 1997; 66: 523531.
  • 108
    Zhang W, Feng JQ, Harris SE, Contag PR, Stevenson DK, Contag CH. Rapid in vivo functional analysis of transgenes in mice using whole body imaging of luciferase expression. Transgenic Res. 2001; 10: 423434.
  • 109
    Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. J. Biomed. Opt. 2001; 6: 432440.
  • 110
    Choy G, Choyke P, Libutti SK. Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol. Imaging 2003; 2: 303312.
  • 111
    Piwnica-Worms D, Schuster DP, Garbow JR. Molecular imaging of host-pathogen interactions in intact small animals. Cell. Microbiol. 2004; 6: 319331.
  • 112
    Wang G, Li Y, Jiang M. Uniqueness theorems in bioluminescence tomography. Med. Phys. 2004; 31: 22892299.
  • 113
    Ntziachristos V, Ripoll J, Wang LV, Weissleder R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 2005; 23: 313320.
  • 114
    Zacharakis G, Kambara H, Shih H, Ripoll J, Grimm J, Saeki Y, Weissleder R, Ntziachristos V. Volumetric tomography of fluorescent proteins through small animals in vivo. Proc. Natl. Acad. Sci. USA 2005; 102: 1825218257.
  • 115
    Slates RB, Farahani K, Shao Y, Marsden PK, Taylor J, Summers PE, Williams S, Beech J, Cherry SR. A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner. Phys. Med. Biol. 1999; 44: 20152027.
  • 116
    Benveniste H, Fowler JS, Rooney W, Ding YS, Baumann AL, Moller DH, Du C, Backus W, Logan J, Carter P, Coplan JD, Biegon A, Rosenblum L, Scharf B, Gatley JS, Volkow ND. Maternal and fetal 11C-cocaine uptake and kinetics measured in vivo by combined PET and MRI in pregnant nonhuman primates. J. Nucl. Med. 2005; 46: 312320.
  • 117
    Del Guerra A, Belcari N. Advances in animal PET scanners. Q. J. Nucl. Med. 2002; 46: 3547.
  • 118
    Fahey FH. Instrumentation in positron emission tomography. Neuroimaging Clin. N. Am. 2003; 13: 659669.
  • 119
    Leen E, Moug SJ, Horgan P. Potential impact and utilization of ultrasound contrast media. Eur. Radiol. 2004; 14(Suppl. 8): P16P24.
  • 120
    Leong-Poi H, Christiansen J, Klibanov AL, Kaul S, Lindner JR. Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation 2003; 107: 455460.
  • 121
    Bekeredjian R, Grayburn PA, Shohet RV. Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J. Am. Coll. Cardiol. 2005; 45: 329335.
  • 122
    Pena CS, Kaufman JA, Geller SC, Waltman AC. Gadopentetate dimeglumine: a possible alternative contrast agent for CT angiography of the aorta. J. Comput. Assist. Tomogr. 1999; 23: 2324.
  • 123
    Strunk HM, Schild H. Actual clinical use of gadolinium-chelates for non-MRI applications. Eur. Radiol. 2004; 14: 10551062.
  • 124
    Rosioreanu A, Alberico RA, Litwin A, Hon M, Grossman ZD, Katz DS. Gadolinium-enhanced computed tomographic angiography: current status. Curr. Probl. Diagn. Radiol. 2005; 34: 207219.
  • 125
    Torchilin VP. Polymeric contrast agents for medical imaging. Curr. Pharm. Biotechnol. 2000; 1: 183215.
  • 126
    Kao CY, Hoffman EA, Beck KC, Bellamkonda RV, Annapragada AV. Long-residence-time nano-scale liposomal iohexol for X-ray-based blood pool imaging. Acad. Radiol. 2003; 10: 475483.
  • 127
    Mukundan S Jr, Ghaghada KB, Badea CT, Kao CY, Hedlund LW, Provenzale JM, Johnson GA, Chen E, Bellamkonda RV, Annapragada A. A liposomal nanoscale contrast agent for preclinical CT in mice. AJR Am. J. Roentgenol. 2006; 186: 300307.
  • 128
    Clarkson RB. Blood-pool MRI contrast agents: properties and characterization. Top. Curr. Chem. 2002; 221: 201235.
  • 129
    Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY, Read EJ, Frank JA. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 2004; 104: 12171223.
  • 130
    Aime S, Botta M, Terreno E. Gd(III)-Based contrast agents for MRI. Adv. Inorg. Chem. 2005; 57: 173237.
  • 131
    Chen JW, Querol Sans M, Bogdanov A Jr, Weissleder R. Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology 2006; 240: 473481.
  • 132
    Jaffer FA, Weissleder R. Seeing within: molecular imaging of the cardiovascular system. Circ. Res. 2004; 94: 433445.
  • 133
    Lowe MP. Activated MR contrast agents. Curr. Pharm. Biotechnol. 2004; 5: 519528.
  • 134
    Lanza GM, Winter P, Caruthers S, Schmeider A, Crowder K, Morawski A, Zhang H, Scott MJ, Wickline SA. Novel paramagnetic contrast agents for molecular imaging and targeted drug delivery. Curr. Pharm. Biotech. 2004; 5: 495507.
  • 135
    Morawski AM, Lanza GA, Wickline SA. Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr. Opin. Biotechnol. 2005; 16: 8992.
  • 136
    Mulder WJ, Douma K, Koning GA, van Zandvoort MA, Lutgens E, Daemen MJ, Nicolay K, Strijkers GJ. Liposome-enhanced MRI of neointimal lesions in the ApoE-KO mouse. Magn. Reson. Med. 2006; 55: 11701174.
  • 137
    Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003; 17: 545580.
  • 138
    Doubrovin M, Serganova I, Mayer-Kuckuk P, Ponomarev V, Blasberg RG. Multimodality in vivo molecular-genetic imaging. Bioconjugate Chem. 2004; 15: 13761388.
  • 139
    Jones T. The enabling technologies needed for PET-based molecular imaging to support drug development. Drug Discov. Today: Technologies 2005; 2: 305309.
  • 140
    Frangioni JV. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 2003; 7: 626634.
  • 141
    Licha K. Contrast agents for optical imaging. Top. Curr. Chem. 2002; 222: 129.
  • 142
    Funovics M, Weissleder R, Tung CH. Protease sensors for bioimaging. Anal. Bioanal. Chem. 2003; 377: 956963.
  • 143
    Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004; 22: 969976.
  • 144
    Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS. Noninvasive imaging of quantum dots in mice. Bioconjugate Chem. 2004; 15: 7986.
  • 145
    Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal. Bioanal. Chem. 2006; 384: 620630.
  • 146
    Zheng J, Perkins G, Kirilova A, Allen C, Jaffray DA. Multimodal contrast agent for combined computed tomography and magnetic resonance imaging applications. Invest. Radiol. 2006; 41: 339348.
  • 147
    McDonald MA, Watkin KL. Small particulate gadolinium oxide and gadolinium oxide albumin microspheres as multimodal contrast and therapeutic agents. Invest. Radiol. 2003; 38: 305310.
  • 148
    Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 2003; 63: 81228125.
  • 149
    Uzgiris EE, Sood A, Bove K, Grimmond B, Lee D, Lomnes S. A multimodal contrast agent for preoperative MR Imaging and intraoperative tumor margin delineation. Technol. Cancer Res. Treat. 2006; 5: 301309.
  • 150
    Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug. Chem. 2002; 13: 554560.
  • 151
    Jaffer FA, Nahrendorf M, Sosnovik D, Kelly KA, Aikawa E, Weissleder R. Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol. Imaging 2006; 5: 8592.
  • 152
    Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, Weissleder R. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 2006; 114: 15041511.
  • 153
    Zhang Z, Achilefu S. Spectral properties of pro-multimodal imaging agents derived from a NIR dye and a metal chelator. Photochem. Photobiol. 2005; 81: 14991504.
  • 154
    Tornell J, Snaith M. Transgenic systems in drug discovery: from target identification to humanized mice. Drug Discov. Today 2002; 7: 461470.
  • 155
    Zambrowicz BP, Turner CA, Sands AT. Predicting drug efficacy: knockouts model pipeline drugs of the pharmaceutical industry. Curr. Opin. Pharmacol. 2003; 3: 563570.
  • 156
    Zambrowicz BP, Sands AT. Knockouts model the 100 best-selling drugs: will they model the next 100? Nat. Rev. Drug Discov. 2003; 2: 3851.
  • 157
    Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS, Dove WF, Duyk G, Dymecki S, Eppig JT, Grieder FB, Heintz N, Hicks G, Insel TR, Joyner A, Koller BH, Lloyd KC, Magnuson T, Moore MW, Nagy A, Pollock JD, Roses AD, Sands AT, Seed B, Skarnes WC, Snoddy J, Soriano P, Stewart DJ, Stewart F, Stillman B, Varmus H, Varticovski L, Verma IM, Vogt TF, von Melchner H, Witkowski J, Woychik RP, Wurst W, Yancopoulos GD, Young SG, Zambrowicz B. The knockout mouse project. Nat. Genet. 2004; 36: 921924.
  • 158
    Auwerx J, Avner P, Baldock R, Ballabio A, Balling R, Barbacid M, Berns A, Bradley A, Brown S, Carmeliet P, Chambon P, Cox R, Davidson D, Davies K, Duboule D, Forejt J, Granucci F, Hastie N, de Angelis MH, Jackson I, Kioussis D, Kollias G, Lathrop M, Lendahl U, Malumbres M, von Melchner H, Muller W, Partanen J, Ricciardi-Castagnoli P, Rigby P, Rosen B, Rosenthal N, Skarnes B, Stewart AF, Thornton J, Tocchini-Valentini G, Wagner E, Wahli W, Wurst W. The European dimension for the mouse genome mutagenesis program. Nat. Genet. 2004; 36: 925927.
  • 159
    Vigot R, Barbieri S, Brauner-Osborne H, Turecek R, Shigemoto R, Zhang YP, Lujan R, Jacobson LH, Biermann B, Fritschy JM, Vacher CM, Muller M, Sansig G, Guetg N, Cryan JF, Kaupmann K, Gassmann M, Oertner TG, Bettler B. Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 2006; 50: 589601.
  • 160
    Ryding AD, Sharp MG, Mullins JJ. Conditional transgenic technologies. J. Endocrinol. 2001; 171: 114.
  • 161
    Toniatti C, Bujard H, Cortese R, Ciliberto G. Gene therapy progress and prospects: transcription regulatory systems. Gene Ther. 2004; 11: 649657.
  • 162
    Cheung C, Akiyama TE, Ward JM, Nicol CJ, Feigenbaum L, Vinson C, Gonzalez FJ. Diminished hepatocellular proliferation in mice humanized for the nuclear receptor peroxisome proliferator-activated receptor alpha. Cancer Res. 2004; 64: 38493854.
  • 163
    Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J. Immunol. 2004; 172: 27312738.
  • 164
    Farkas E, Luiten PG. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog Neurobiol. 2001; 64: 575611.
  • 165
    de la Torre JC. Alzheimer disease as a vascular disorder: nosological evidence. Stroke 2002; 33: 11521162.
  • 166
    Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 2004; 5: 347360.
  • 167
    Castellani RJ, Smith MA, Perry G, Friedland RP. Cerebral amyloid angiopathy: major contributor or decorative response to Alzheimer's disease pathogenesis. Neurobiol. Aging 2004; 25: 599602.
  • 168
    Nicoll JA, Yamada M, Frackowiak J, Mazur-Kolecka B, Weller RO. Cerebral amyloid angiopathy plays a direct role in the pathogenesis of Alzheimer's disease. Pro-CAA position statement. Neurobiol. Aging 2004; 25: 589597.
  • 169
    Brandt R, Hundelt M, Shahani. Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. Biochim. Biophys. Acta 2005; 1739: 331354.
  • 170
    Higgins GA, Jacobsen H. Transgenic mouse models of Alzheimer's disease: phenotype and application. Behav. Pharmacol. 2003; 14: 419438.
  • 171
    Spires TL, Hyman BT. Transgenic models of Alzheimer's disease: learning from animals. NeuroRx. 2005; 2: 423437.
  • 172
    Thal LJ, Kantarci K, Reiman EM, Klunk WE, Weiner MW, Zetterberg H, Galasko D, Pratico D, Griffin S, Schenk D, Siemers E. The role of biomarkers in clinical trials for Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2006; 20: 615.
  • 173
    Kantarci K. Magnetic resonance markers for early diagnosis and progression of Alzheimer's disease. Expert Rev. Neurother. 2005; 5: 663670.
  • 174
    Mueggler T. Magnetic resonance imaging and spectroscopy in transgenic mice modelling Alzheimer's disease. In In vivo MR Techniques in Drug Discovery and Development, BeckmannN (ed.). Taylor & Francis: New York, 2006; 95110.
  • 175
    Dhenain M, Privat N, Duyckaerts C, Jacobs RE. Senile plaques do not induce susceptibility effects in T2*-weighted MR microscopic images. NMR Biomed. 2002; 15: 197203.
  • 176
    Helpern JA, Lee SP, Falangola MF, Dyakin VV, Bogart A, Ardekani B, Duff K, Branch C, Wisniewski T, de Leon MJ, Wolf O, O'Shea J, Nixon RA. MRI assessment of neuropathology in a transgenic mouse model of Alzheimer's disease. Magn. Reson. Med. 2004; 51: 794798.
  • 177
    Lee SP, Falangola MF, Nixon RA, Duff K, Helpern JA. Visualization of beta-amyloid plaques in a transgenic mouse model of Alzheimer's disease using MR microscopy without contrast reagents. Magn. Reson. Med. 2004; 52: 538544.
  • 178
    Jack CR Jr, Wengenack TM, Reyes DA, Garwood M, Curran GL, Borowski BJ, Lin J, Preboske GM, Holasek SS, Adriany G, Poduslo JF. In vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer's transgenic mice. J. Neurosci. 2005; 25: 1004110048.
  • 179
    Braakman N, Matysik J, van Dvinen SG, Verbeek F, Schliebs R, deGroot HJ, Alia A. Longitudinal assessment of Alzheimer's teta-amyloid plaque development in transgenic mice monitored by in vivo magnetic resonance imaging. J. Magn. Reson. Imaging 2006; 24: 530536.
  • 180
    Poduslo JF, Wengenack TM, Curran GL, Wisniewski T, Sigurdsson EM, Macura SI, Borowski BJ, Jack CR Jr. Molecular targeting of Alzheimer's amyloid plaques for contrast-enhanced magnetic resonance imaging. Neurobiol. Dis. 2002; 11: 315329.
  • 181
    Wadghiri YZ, Sigurdsson EM, Sadowski M, Elliott JI, Li Y, Scholtzova H, Tang CY, Aguinaldo G, Pappolla M, Duff K, Wisniewski T, Turnbull DH. Detection of Alzheimer's amyloid in transgenic mice using magnetic resonance microimaging. Magn. Reson. Med. 2003; 50: 293302.
  • 182
    Higuchi M, Iwata N, Matsuba Y, Sato K, Sasamoto K, Saido T. 19F and 1H MRI detection of amyloid beta plaques in vivo. Nat. Neurosci. 2005; 8: 527533.
  • 183
    Zhang J, Yarowsky P, Gordon MN, Di Carlo G, Munireddy S, van Zijl PCM, Mori S. Detection of amyloid plaques in mouse models of Alzheimer's disease by magnetic resonance imaging. Magn. Reson. Med. 2004; 51: 452457.
  • 184
    Vanhoutte G, Dewachter I, Borghgraef P, Van Leuven F, Van der Linden A. Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer's disease. Magn. Reson. Med. 2005; 53: 607613.
  • 185
    Falangola MF, Lee SP, Nixon RA, Duff K, Helpern JA. Histological co-localization of iron in Abeta plaques of PS/APP transgenic mice. Neurochem. Res. 2005; 30: 201205.
  • 186
    Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J. Med. Chem. 2003; 46: 27402754.
  • 187
    Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann. Neurol. 2004; 55: 306319.
  • 188
    Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, Holt DP, Meltzer CC, DeKosky ST, Mathis CA. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J. Cereb. Blood Flow Metab. 2005; 25: 15281547.
  • 189
    Klunk WE, Lopresti BJ, Ikonomovic MD, Lefterov IM, Koldamova RP, Abrahamson EE, Debnath ML, Holt DP, Huang GF, Shao L, DeKosky ST, Price JC, Mathis CA. Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer's disease brain but not in transgenic mouse brain. J. Neurosci. 2005; 25: 1059810606.
  • 190
    Toyama H, Ye D, Ichise M, Liow JS, Cai L, Jacobowitz D, Musachio JL, Hong J, Crescenzo M, Tipre D, Lu JQ, Zoghbi S, Vines DC, Seidel J, Katada K, Green MV, Pike VW, Cohen RM, Innis RB. PET imaging of brain with the beta-amyloid probe, [11C]6-OH-BTA-1, in a transgenic mouse model of Alzheimer's disease. Eur. J. Nucl. Med. Mol. Imaging 2005; 32: 593600.
  • 191
    Hintersteiner M, Enz A, Frey P, Jaton A-L, Kinzy W, Kneuer R, Neumann U, Rudin M, Staufenbiel M, Stoeckli M, Wiederhold K-H, Gremlich H-U. In vivo detection of amyloid-β deposits by near-infrared imaging using an oxazine-derivative probe. Nat. Biotechnol. 2005; 23: 577583.
  • 192
    Beckmann N, Stirnimann R, Bochelen D. High-resolution magnetic resonance angiography of the mouse brain: application to murine focal cerebral ischemia models. J. Magn. Reson. 1999; 140: 442450.
  • 193
    Beckmann N. High resolution magnetic resonance angiography non-invasively reveals mouse strain differences in the cerebrovascular anatomy in vivo. Magn. Reson. Med. 2000; 44: 252258.
  • 194
    Beckmann N, Schuler A, Mueggler T, Meyer EP, Wiederhold KH, Staufenbiel M, Krucker T. Age-dependent cerebrovascular abnormalities and blood flow disturbances in APP23 mice modeling Alzheimer's disease. J. Neurosci. 2003; 23: 84538459.
  • 195
    Krucker T, Schuler A, Meyer EP, Staufenbiel M, Beckmann N. Magnetic resonance angiography and vascular corrosion casting as tools in biomedical research: application to transgenic mice modeling Alzheimer's disease. Neurol. Res. 2004; 26: 507516.
  • 196
    Krucker T, Lang A, Meyer EP. New polyurethane-based material for vascular corrosion casting with improved physical and imaging characteristics. Microsc. Res. Tech. 2006; 69: 138147.
  • 197
    Kantarci K, Petersen RC, Boeve BF, Knopman DS, Tang-Wai DF, O'Brien PC, Weigand SD, Edland SD, Smith GE, Ivnik RJ, Ferman TJ, Tangalos EG, Jack CR Jr. 1H MR spectroscopy in common dementias. Neurology 2004; 63: 13931398.
  • 198
    Sun SW, Song SK, Harms MP, Lin SJ, Holtzman DM, Merchant KM, Kotyk JJ. Detection of age-dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer's disease using magnetic resonance diffusion tensor imaging. Exp. Neurol. 2005; 191: 7785.
  • 199
    Song SK, Kim JH, Lin SJ, Brendza RP, Holtzman DM. Diffusion tensor imaging detects age-dependent white matter changes in a transgenic mouse model with amyloid deposition. Neurobiol. Dis. 2004; 15: 640647.
  • 200
    Dumont M, Strazielle C, Staufenbiel M, Lalonde R. Spatial learning and exploration of environmental stimuli in 24-month- old female APP23 transgenic mice with the Swedish mutation. Brain Res. 2004; 1024: 113121.
  • 201
    Lalonde R, Dumont M, Staufenbiel M, Strazielle C. Neurobehavioral characterization of APP23 transgenic mice with the SHIRPA primary screen. Behav. Brain Res. 2005; 157: 9198.
  • 202
    Thiele H, Nagel E, Paetsch I, Schnackenburg B, Bornstedt A, Kouwenhoven M, Wahl A, Schuler G, Fleck E. Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J. Magn. Reson. Imaging 2001; 14: 362367.
  • 203
    Kaandorp TA, Lamb HJ, Bax JJ, van der Wall EE, de Roos A. Magnetic resonance imaging of coronary arteries, the ischemic cascade, and myocardial infarction. Am. Heart. J. 2005; 149: 200208.
  • 204
    Vallee JP, Ivancevic MK, Nguyen D, Morel DR, Jaconi M. Current status of cardiac MRI in small animals. MAGMA 2004; 17: 149156.
  • 205
    Nahrendorf M, Bauer WR. Cardiac MR Techniques Applied to Small Rodents. In In vivo MR Techniques in Drug Discovery and Development, BeckmannN (ed.). Taylor & Francis: New York, 2006; 315327.
  • 206
    Wiesmann F, Ruff J, Hiller KH, Rommel E, Haase A, Neubauer S. Developmental changes of cardiac function and mass assessed with MRI in neonatal, juvenile, and adult mice. Am. J. Physiol. Heart Circ. Physiol. 2000; 278: H652H657.
  • 207
    Wiesmann F, Frydrychowicz A, Rautenberg J, Illinger R, Rommel E, Haase A, Neubauer S. Analysis of right ventricular function in healthy mice and a murine model of heart failure by in vivo MRI. Am. J. Physiol. Heart Circ. Physiol. 2002; 283: H1065H1071.
  • 208
    Nahrendorf M, Wiesmann F, Hiller KH, Hu K, Waller C, Ruff J, Lanz TE, Neubauer S, Haase A, Ertl G, Bauer WR. Serial cine-magnetic resonance imaging of left ventricular remodeling after myocardial infarction in rats. J. Magn. Reson. Imaging 2001; 14: 547555.
  • 209
    Syed F, Diwan A, Hahn HS. Murine echocardiography: a practical approach for phenotyping genetically manipulated and surgically modeled mice. J. Am. Soc. Echocardiogr. 2005; 18: 982990.
  • 210
    Dawson D, Lygate CA, Saunders J, Schneider JE, Ye X, Hulbert K, Noble JA, Neubauer S. Quantitative 3-dimensional echocardiography for accurate and rapid cardiac phenotype characterization in mice. Circulation 2004; 110: 16321637.
  • 211
    Nahrendorf M, Streif JU, Hiller KH, Hu K, Nordbeck P, Ritter O, Sosnovik DE, Bauer L, Neubauer S, Jakob PM, Ertl G, Spindler M, Bauer WR. Multimodal functional cardiac MR imaging in creatine kinase deficient mice reveals subtle abnormalities in myocardial perfusion and mechanics. Am. J. Physiol. Heart Circ. Physiol. 2006; 290: H2516H2521.
  • 212
    Ingwall JS, Kramer MF, Fifer MA, Lorell BH, Shemin R, Grossman W, Allen PD. The creatine kinase system in normal and diseased human myocardium. N. Engl. J. Med. 1985; 313: 10501054.
  • 213
    Neubauer S, Horn M, Naumann A, Tian R, Hu K, Laser M, Friedrich J, Gaudron P, Schnackerz K, Ingwall JS, ErH G. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction. J. Clin. Invest. 1995; 95: 10921100.
  • 214
    Nahrendorf M, Spindler M, Hu K, Bauer L, Ritter O, Nordbeck P, Quaschning T, Hiller KH, Wallis J, Ertl G, Bauer WR, Neubauer S. Creatine kinase knockout mice show left ventricular hypertrophy and dilatation, but unaltered remodeling post-myocardial infarction. Cardiovasc. Res. 2005; 65: 419427.
  • 215
    Menasche P. Cell transplantation for the treatment of heart failure. Semin. Thorac. Cardiovasc. Surg. 2002; 14: 157166.
  • 216
    Kustermann E, Roell W, Breitbach M, Wecker S, Wiedermann D, Buehrle C, Welz A, Hescheler J, Fleischmann BK, Hoehn M. Stem cell implantation in ischemic mouse heart: a high-resolution magnetic resonance imaging investigation. NMR Biomed. 2005; 18: 362370.
  • 217
    Badea CT, Fubara B, Hedlund LW, Johnson GA. 4-D micro-CT of the mouse heart. Mol. Imaging 2005; 4: 110116.
  • 218
    Bellenger NG, Davies LC, Francis JM, Coats AJ, Pennell DJ. Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2000; 2: 271278.
  • 219
    Berman DS, Hachamovitch R, Shaw LJ, Friedman JD, Hayes SW, Thomson LE, Fieno DS, Germano G, Wong ND, Kang X, Rozanski A. Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance: Noninvasive risk stratification and a conceptual framework for the selection of noninvasive imaging tests in patients with known or suspected coronary artery disease. J. Nucl. Med. 2006; 47: 11071118.
  • 220
    Orakzai SH, Orakzai RH, Nasir K, Budoff MJ. Assessment of cardiac function using multidetector row computed tomography. J. Comput. Assist. Tomogr. 2006; 30: 555563.
  • 221
    Ross R. Atherosclerosis: an inflammatory disease. N. Engl. J. Med. 1999; 340: 115126.
  • 222
    Stoll G, Bendszus M. Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke 2006; 37: 19231932.
  • 223
    Davies JR, Rudd JH, Weissberg PL, Narula J. Radionuclide imaging for the detection of inflammation in vulnerable plaques. J. Am. Coll. Cardiol. 2006; 47(8 Suppl.): C57C68.
  • 224
    Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK, Hartung D, Steinmetz N, Vanderheyden JL, Vannan MA, Gold HK, Reutelingsperger CP, Hofstra L, Narula J. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 2003; 108: 31343139.
  • 225
    Kietselaer BL, Reutelingsperger CP, Heidendal GA, Daemen MJ, Mess WH, Hofstra L, Narula J. Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N. Engl. J. Med. 2004; 350: 14721473.
  • 226
    Isobe S, Tsimikas S, Zhou J, Fujimoto S, Sarai M, Branks MJ, Fujimoto A, Hofstra L, Reutelingsperger CP, Murohara T, Virmani R, Kolodgie FD, Narula N, Petrov A, Narula J. Noninvasive imaging of atherosclerotic lesions in apolipoprotein E-deficient and low-density-lipoprotein receptor-deficient mice with annexin A5. J. Nucl. Med. 2006; 47: 14971505.
  • 227
    Chen J, Tung CH, Mahmood U, Ntziachristos V, Gyurko R, Fishman MC, Huang PL, Weissleder R. In vivo imaging of proteolytic activity in atherosclerosis. Circulation 2002; 105: 27662771.
  • 228
    Deguchi JO, Aikawa M, Tung CH, Aikawa E, Kim DE, Ntziachristos V, Weissleder R, Libby P. Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 2006; 114: 5562.
  • 229
    Choudhury RP, Fuster V, Fayad ZA. Molecular, cellular and functional imaging of atherothrombosis. Nat. Rev. Drug Discov. 2004; 3: 913925.
  • 230
    Corti R. Noninvasive imaging of atherosclerotic vessels by MRI for clinical assessment of the effectiveness of therapy. Pharmacol. Ther. 2006; 110: 5770.
  • 231
    Sirol M, Fuster V, Fayad ZA. Plaque imaging and characterization using magnetic resonance imaging: towards molecular assessment. Curr. Mol. Med. 2006; 6: 541548.
  • 232
    Yuan C, Kerwin WS, Yarnykh VL, Cai J, Saam T, Chu B, Takaya N, Ferguson MS, Underhill H, Xu D, Liu F, Hatsukami TS. MRI of atherosclerosis in clinical trials. NMR Biomed. 2006; 19: 636654.
  • 233
    Choudhury RP, Aguinaldo JG, Rong JX, Kulak JL, Kulak AR, Reis ED, Fallon JT, Fuster V, Fisher EA, Fayad ZA. Atherosclerotic lesions in genetically modified mice quantified in vivo by non-invasive high-resolution magnetic resonance microscopy. Atherosclerosis 2002; 162: 315321.
  • 234
    Hockings PD, Roberts T, Galloway GJ, Reid DG, Harris DA, Vidgeon-Hart M, Groot PH, Suckling KE, Benson GM. Repeated three-dimensional magnetic resonance imaging of atherosclerosis development in innominate arteries of low-density lipoprotein receptor-knockout mice. Circulation 2002; 106: 17161721.
  • 235
    Chaabane L, Soulas EC, Contard F, Salah A, Guerrier D, Briguet A, Douek P. High-resolution magnetic resonance imaging at 2 Tesla: potential for atherosclerotic lesions exploration in the apolipoprotein E knockout mouse. Invest. Radiol. 2003; 38: 532538.
  • 236
    Wiesmann F, Szimtenings M, Frydrychowicz A, Illinger R, Hunecke A, Rommel E, Neubauer S, Haase A. High-resolution MRI with cardiac and respiratory gating allows for accurate in vivo atherosclerotic plaque visualization in the murine aortic arch. Magn. Reson. Med. 2003; 50: 6974.
  • 237
    Trogan E, Fayad ZA, Itskovich VV, Aguinaldo JG, Mani V, Fallon JT, Chereshnev I, Fisher EA. Serial studies of mouse atherosclerosis by in vivo magnetic resonance imaging detect lesion regression after correction of dyslipidemia. Arterioscler. Thromb. Vasc. Biol. 2004; 24: 17141719.
  • 238
    Chaabane L, Pellet N, Bourdillon MC, Desbleds Mansard C, Sulaiman A, Hadour G, Thivolet-Bejui F, Roy P, Briguet A, Douek P, Canet Soulas E. Contrast enhancement in atherosclerosis development in a mouse model: in vivo results at 2 Tesla. MAGMA 2004; 17: 188195.
  • 239
    Lipinski MJ, Amirbekian V, Frias JC, Aguinaldo JG, Mani V, Briley-Saebo KC, Fuster V, Fallon JT, Fisher EA, Fayad ZA. MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor. Magn. Reson. Med. 2006; 56: 601610.
  • 240
    Irvin CG, Bates JH. Measuring the lung function in the mouse: the challenge of size. Respir. Res. 2003; 4: 4.
  • 241
    Bates JH, Irvin CG. Measuring lung function in mice: the phenotyping uncertainty principle. J. Appl. Physiol. 2003; 94: 12971306.
  • 242
    Beckmann N, Tigani B, Mazzoni L, Fozard JR. MRI of lung parenchyma in rats and mice using a gradient-echo sequence. NMR Biomed. 2001; 14: 297306.
  • 243
    Shattuck MD, Gewalt SL, Glover GH, Hedlund LW, Johnson GA. MR microimaging of the lung using volume projection encoding. Magn. Reson. Med. 1997; 38: 938942.
  • 244
    Marzola P, Lanzoni A, Nicolato E, Di Modugno V, Cristofori P, Osculati F, Sbarbati A. 1H MRI of pneumococcal pneumonia in a murine model. J. Magn. Reson. Imaging 2005; 22: 170174.
  • 245
    Tournebize R, Doan BT, Dillies MA, Maurin S, Beloeil JC, Sansonetti PJ. Magnetic resonance imaging of Klebsiella pneumoniae-induced pneumonia in mice. Cell. Microbiol. 2006; 8: 3344.
  • 246
    Moller HE, Chen XJ, Saam B, Hagspiel KD, Johnson GA, Altes TA, de Lange EE, Kauczor HU. MRI of the lungs using hyperpolarized noble gases. Magn. Reson. Med. 2002; 47: 10291051.
  • 247
    Dugas JP, Garbow JR, Kobayashi DK, Conradi MS. Hyperpolarized (3)He MRI of mouse lung. Magn. Reson. Med. 2004; 52: 13101317.
  • 248
    Chen BT, Yordanov AT, Johnson GA. Ventilation-synchronous magnetic resonance microscopy of pulmonary structure and ventilation in mice. Magn. Reson. Med. 2005; 53: 6975.
  • 249
    Haczku A, Emami K, Fischer MC, Kadlecek S, Ishii M, Panettieri RA, Rizi RR. Hyperpolarized 3He MRI in asthma measurements of regional ventilation following allergic sensitization and challenge in mice: preliminary results. Acad. Radiol. 2005; 12: 13621370.
  • 250
    Chen XJ, Hedlund LW, Möller HE, Chawla MS, Maronpot RR, Johnson GA. Detection of emphysema in rat lungs by using magnetic resonance measurements of 3He diffusion. Proc. Natl. Acad. Sci. USA 2000; 97: 1147811481.
  • 251
    Heverhagen JT, Hahn HK, Wegmann M, Herz U, Shaffer Whitaker CD, Matschl V, Alfke H. Volumetric analysis of mice lungs in a clinical magnetic resonance imaging scanner. MAGMA 2004; 17: 8085.
  • 252
    Sharp JT, Hammond MD. Pressure volume relationships. In The Lung: Scientific Foundations, CrystalRG, WestJB, BarnesPJ, CherniackNS, WeibelER (eds). Raven Press Ltd: New York, 1991; 839854.
  • 253
    Choudhury S, Wilson MR, Goddard ME, O'Dea KP, Takata M. Mechanisms of early pulmonary neutrophil sequestration in ventilator-induced lung injury in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004; 287: L902L910.
  • 254
    Peng X, Abdulnour RE, Sammani S, Ma SF, Han EJ, Hasan EJ, Tuder R, Garcia JG, Hassoun PM. Inducible nitric oxide synthase contributes to ventilator-induced lung injury. Am. J. Respir. Crit. Care Med. 2005; 172: 470479.
  • 255
    Bresnihan B. Pathogenesis of joint damage in rheumatoid arthritis. J. Rheumatol. 1999; 26: 717719.
  • 256
    Cutolo M. Macrophages as effectors of the immunoendocrinologic interactions in autoimmune rheumatic diseases. Ann. NY Acad. Sci. 1999; 876: 3241.
  • 257
    Kinne RW, Brauer R, Stuhlmuller B, Palombo-Kinne E, Burmester GR. Macrophages in rheumatoid arthritis. Arthritis Res 2000; 2: 189202.
  • 258
    Brand DD, Kang AH, Rosloniec EF. Immunopathogenesis of collagen arthritis. Springer Semin. Immunopathol. 2003; 25: 318.
  • 259
    Brand DD, Kang AH, Rosloniec EF. The mouse model of collagen-induced arthritis. Methods Mol. Med. 2004; 102: 295312.
  • 260
    Moore AR. Collagen-induced arthritis. Methods Mol. Biol. 2003; 225: 175179.
  • 261
    Williams RO. Collagen-induced arthritis as a model for rheumatoid arthritis. Methods Mol. Med. 2004; 98: 207216.
  • 262
    Cooke T. Antigen-induced arthritis, polyarthritis, and teno-synovitis. In CRC Handbook of Animal Models for the Rheumatoid Diseases, GreenwaldR, DiamondH (eds). CRC Press: Boca Raton, 1988; 5381.
  • 263
    Machold KP, Nell V, Stamm T, Aletaha D, Smolen JS. Early rheumatoid arthritis. Curr. Opin. Rheumatol. 2006; 18: 282288.
  • 264
    Hunter DJ, Conaghan PG. Imaging outcomes and their role in determining outcomes in osteoarthritis and rheumatoid arthritis. Curr. Opin. Rheumatol. 2006; 18: 157162.
  • 265
    Guermazi A, Taouli B, Lynch JA, Peterfy CG. Imaging of bone erosion in rheumatoid arthritis. Semin. Musculoskelet. Radiol. 2004; 8: 269285.
  • 266
    Kothari M, Peterfy C. Rheumatoid and osteoarthritis: clinical applications. In In vivo MR Techniques in Drug Discovery and Development, BeckmannN (ed.). Taylor & Francis: New York, 2006; 465485.
  • 267
    Nishida S, Tsurukami H, Sakai A, Sakata T, Ikeda S, Tanaka M, Ito M, Nakamura T. Stage-dependent changes in trabecular bone turnover and osteogenic capacity of marrow cells during development of type II collagen-induced arthritis in mice. Bone 2002; 30: 872879.
  • 268
    Barck KH, Lee WP, Diehl LJ, Ross J, Gribling P, Zhang Y, Nguyen K, van Bruggen N, Hurst S, Carano RAD. Quantification of cortical bone loss and repair for therapeutic evaluation in collagen-induced arthritis, by micro-computed tomography and automated image analysis. Arthritis Rheum. 2004; 50: 33773386.
  • 269
    Gasser JA, Ingold P, Grosios K, Laib A, Hammerle S, Koller B. Noninvasive monitoring of changes in structural cancellous bone parameters with a novel prototype micro-CT. J. Bone Miner. Metab. 2005; 23(Suppl.): 9096.
  • 270
    Jiang Y, Zhao J, Liao EY, Dai RC, Wu XP, Genant HK. Application of micro-CT assessment of 3-D bone microstructure in preclinical and clinical studies. J. Bone Miner. Metab. 2005; 23(Suppl.): 122131.
  • 271
    Kohler T, Beyeler M, Webster D, Muller R. Compartmental bone morphometry in the mouse femur: reproducibility and resolution dependence of microtomographic measurements. Calcif. Tissue Int. 2005; 77: 281290.
  • 272
    Weissleder R, Elizondo G, Wittenberg J, Rabito C, Bengele H, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 1990; 175: 489493.
  • 273
    Peterfy CG, Majumdar S, Lang P, van Dijke CF, Sack K, Genant HK. MR imaging of the arthritic knee: improved discrimination of cartilage, synovium, and effusion with pulsed saturation transfer and fat-suppressed T1-weighted sequences. Radiology 1994; 191: 413419.
  • 274
    Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 1996; 198: 209212.
  • 275
    Dawson J, Gustard S, Beckmann N. High-resolution three-dimensional magnetic resonance imaging for the investigation of knee joint damage during the time course of antigen-induced arthritis in rabbits. Arthritis Rheum. 1999; 42: 119128.
  • 276
    Beckmann N, Falk R, Zurbrugg S, Dawson J, Engelhardt P. Macrophage infiltration into the rat knee detected by MRI in a model of antigen-induced arthritis. Magn. Reson. Med. 2003; 49: 10471055.
  • 277
    Hansch A, Frey O, Sauner D, Hilger I, Haas M, Malich A, Bräuer R, Kaiser WA. In vivo imaging of experimental arthritis with near-infrared fluorescence. Arthr. Rheum. 2004; 50: 961967.
  • 278
    Bischof RJ, Zafiropoulos D, Hamilton JA, Campbell IK. Exacerbation of acute inflammatory arthritis by the colony-stimulating factors CSF-1 and granulocyte macrophage (GM)-CSF: evidence of macrophage infiltration and local proliferation. Clin. Exp. Immunol. 2000; 119: 361367.
  • 279
    Cockman MD, Blanton CA, Chmielewski PA, Dong L, Dufresne TE, Hookfin EB, Karb MJ, Liu S, Wehmeyer KR. Quantitative imaging of proteoglycan in cartilage using a gadolinium probe and microCT. Osteoarthritis Cartilage 2006; 14: 210214.
  • 280
    Jiang Y, Zhao J, White DL, Genant HK. Micro CT and Micro MR imaging of 3D architecture of animal skeleton. J. Musculoskelet. Neuronal Interact. 2000; 1: 4551.
  • 281
    Biswal S. Molecular imaging of musculoskeletal diseases. Semin. Musculoskelet. Radiol. 2003; 7: 317350.
  • 282
    Lai WF, Chang CH, Tang Y, Bronson R, Tung CH. Early diagnosis of osteoarthritis using cathepsin B sensitive near-infrared fluorescent probes. Osteoarthritis Cartilage 2004; 12: 239244.
  • 283
    Chen WT, Mahmood U, Weissleder R, Tung CH. Arthritis imaging using a near-infrared fluorescence folate-targeted probe. Arthritis Res. Ther. 2005; 7: R310R317.
  • 284
    Scaglione R, Argano C, Di Chiara T, Licata G. Obesity and cardiovascular risk: the new public health problem of worldwide proportions. Expert Rev. Cardiovasc. Ther. 2004; 2: 203212.
  • 285
    Haslam DW, James WP. Obesity. Lancet 2005; 366: 11971209.
  • 286
    Bluher M. Transgenic animal models for the study of adipose tissue biology. Best Pract. Res. Clin. Endocrinol. Metab. 2005; 19: 605623.
  • 287
    Deurenberg D, Deurenberg-Yap M. Differences in body-composition assumptions across ethnic groups: practical consequences. Curr. Opin. Nutr. Metab. Care 2001; 4: 377383.
  • 288
    Prentice AM, Jebb SA. Beyond body mass index. Obes. Rev. 2001; 2: 141147.
  • 289
    Hun CS, Hasegawa K, Kawabata T, Kato M, Shimokawa T, Kagawa Y. Increased uncoupling protein2 mRNA in white adipose tissue, and decrease in leptin, visceral fat, blood glucose, and cholesterol in KK-Ay mice fed with eicosapentaenoic and docosahexaenoic acids in addition to linolenic acid. Biochem. Biophys. Res. Commun. 1999; 259: 8590.
  • 290
    Brommage R. Validation and calibration of DEXA body composition in mice. Am. J. Physiol. Endocrinol. Metab. 2003; 285: E454E459.
  • 291
    Changani KK, Nicholson A, White A, Latcham JK, Reid DG, Clapham JC. A longitudinal magnetic resonance imaging (MRI) study of differences in abdominal fat distribution between normal mice, and lean overexpressers of mitochondrial uncoupling protein-3 (UCP-3). Diabetes Obes. Metab. 2003; 5: 99105.
  • 292
    Du H, Dardzinski BJ, O'Brien KJ, Donnelly LF. MRI of fat distribution in a mouse model of lysosomal acid lipase deficiency. AJR Am. J. Roentgenol. 2005; 184: 658662.
  • 293
    Pi-Sunyer FX. The epidemiology of central fat distribution in relation to disease. Nutr. Rev. 2004; S120S126.
  • 294
    Mystkowski P, Shankland E, Schreyer SA, LeBoeuf RC, Schwartz RS, Cummings DE, Kushmerick M, Schwartz MW. Validation of whole-body magnetic resonance spectroscopy as a tool to assess murine body composition. Int. J. Obes. 2000; 24: 719724.
  • 295
    Taicher GZ, Tinsley FC, Reiderman A, Heiman M. Quantitative magnetic resonance (QMR) method for bone and whole-body- composition analysis. Anal. Bioanal. Chem. 2003; 377: 9901002.
  • 296
    Tinsley FC, Taicher GZ, Heiman ML. Evaluation of a quantitative magnetic resonance method for mouse whole body composition analysis. Obes. Res. 2004; 12: 150160.
  • 297
    Kunnecke B, Verry P, Benardeau A, von Kienlin M. Quantitative body composition analysis in awake mice and rats by magnetic resonance relaxometry. Obes. Res. 2004; 12: 16041615.
  • 298
    Boesch C, Kreis R. Observation of intramyocellular lipids by 1H-magnetic resonance spectroscopy. Ann. NY Acad. Sci. 2000; 904: 2531.
  • 299
    Laurent D, Yerby B, Sari-Sarraf F, Hirsch E, Gounarides J, Daniels T, Wang X, Wade S, Rangwala S. Measurement of ectopic fat deposition in genetically modified mice fed a high fat diet. In Proc. Int. Soc. Magn. Reson. Med., Seattle, 2006; p. 474.
  • 300
    Klaunberg BA, Lizak MJ. Considerations for setting up a small- animal imaging facility. Lab. Animal 2004; 33: 2834.
  • 301
    Colby LA, Morenko BJ. Clinical considerations in rodent bioimaging. Comp. Med. 2004; 54: 623630.
  • 302
    McConville P, Moody JB, Moffat BA. High-throughput magnetic resonance imaging in mice for phenotyping and therapeutic evaluation. Curr. Opin. Chem. Biol. 2005; 9: 413420.
  • 303
    Pruessmann KP. Parallel imaging at high field strength: synergies and joint potential. Top. Magn. Reson. Imaging 2004; 15: 237244.
  • 304
    Sutton BP, Ciobanu L, Zhang X, Webb A. Parallel imaging for NMR microscopy at 14.1 Tesla. Magn. Reson. Med. 2005; 54: 913.
  • 305
    Antoch G, Vogt FM, Freudenberg LS, Nazaradeh F, Goehde SC, Barkhausen J, Dahmen G, Bockisch A, Debatin JF, Ruehm SG. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 2003; 290: 31993206.
  • 306
    Goehde SC, Hunold P, Vogt FM, Ajaj W, Goyen M, Herborn CU, Forsting M, Debatin JF, Ruehm SG. Full-body cardiovascular and tumor MRI for early detection of disease: feasibility and initial experience in 298 subjects. AJR Am. J. Roentgenol. 2005; 184: 598611.
  • 307
    Schlemmer HP, Schafer J, Pfannenberg C, Radny P, Korchidi S, Muller-Horvat C, Nagele T, Tomaschko K, Fenchel M, Claussen CD. Fast whole-body assessment of metastatic disease using a novel magnetic resonance imaging system: initial experiences. Invest. Radiol. 2005; 40: 6471.
  • 308
    Seemann MD, Meisetschlaeger G, Gaa J, Rummeny EJ. Assessment of the extent of metastases of gastrointestinal carcinoid tumors using whole-body PET, CT, MRI, PET/CT and PET/MRI. Eur. J. Med. Res. 2006; 11: 5865.